首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   3篇
地质学   2篇
海洋学   1篇
自然地理   4篇
  2017年   1篇
  2014年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有10条查询结果,搜索用时 234 毫秒
1
1.
Coercive force of single crystals of magnetite at low temperatures   总被引:1,自引:0,他引:1  
The temperature dependence of coercive force H c was studied on well-characterized and stoichiometric millimetre-sized single crystals of magnetite at a series of 16 temperatures from 300 to 10 K using a SQUID magnetometer. H c decreases gradually with cooling to the isotropic temperature, T i = 130 K, where the first magnetocrystalline anisotropy constant K 1 becomes zero. H c exhibits a sharp increase at the Verwey transition, T v = 120 K, where the structure changes from cubic to monoclinic. In crossing the Verwey transition, H c increases by more than two orders of magnitude, from 20 μT to 2.4 mT, and the shape of the hysteresis loops becomes wasp-waisted.
Observed coercivity between 300 K and 170 K varies with temperature as λ s / M s , where λ s is the magnetostriction constant and M s is the saturation magnetization, indicating that the coercivity in MD magnetite is controlled mainly by internal stress associated with dislocations or other crystal defects. It seems likely that the stable single-domain-like magnetic memory observed in large MD magnetite crystals is due to magnetoelastically pinned domain walls. The discontinuous change in H c at the Verwey transition is controlled by abrupt changes in magnetocrystalline and magnetostriction constants due to crystal deformation from cubic to monoclinic structure.  相似文献   
2.
A catastrophic landslide following a rainy season occurred in the backyard of a school building in Söke, Turkey. The landslide caused property damage and adversely affected the present forest cover. Immediately after the landslide, double-row stabilizing piles were designed and constructed based on the findings of two-dimensional (2D) finite element (FE) analyses to take an urgent precaution. To remedy the problem, pile displacements were monitored using inclinometers, and it was observed that the measured displacements were greater than the values calculated in the design stage. Accordingly, two different three-dimensional (3D) numerical FE models were used in tandem with the inclinometer data to determine the load transfer mechanism. In the first model, numerical analyses were made to predict the pile displacements, and while the model predicted successfully the displacement of the piles constructed in the middle with reasonable accuracy, it failed for the corner piles. In the second model, the soil load transfer between piles was determined considering the sliding mass geometry, the soil arching mechanism and the group interaction between adjacent piles. The results of the second model revealed that the middle piles with large displacements transferred their loads to the corner piles with smaller displacements. The generated soil loads, perpendicular to the sliding direction, restricted pile deformations and piles with less displacement were subjected to greater loads due to the bowl-shaped landslide. A good agreement between the computed pile displacements and inclinometer data indicates that the existing soil pressure theories should be improved considering the position of the pile in the sliding mass, the depth and deformation modulus of stationary soil, the relative movement between the soil and piles and the relative movement of adjacent piles.  相似文献   
3.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   
4.
5.
A new rapid method for identifying relative grain size variations in magnetic involves the parameter anhysteretic susceptibility (χARM, i.e. specific ARM obtained in a 1 Oe steady field), which is particularly sensitive to the single domain (SD) and small pseudo-single domain (PSD) grains of the finer magnetite fraction. A second parameter, low-field susceptibility (χ), is relatively more sensitive to the coarser magnetite fraction (larger PSD and smaller multidomain (MD) grains). We can then obtain a measure of the ratio of coarse- to fine-grain magnetite for large numbers of samples by plotting χARversusχ. A simple idealized model based on sized magnetite samples is proposed to explain the use of the χARMversusχ plot for detecting relative grain-size changes in the magnetic content of natural materials. The sediments of three lakes that contain magnetite or a similar magnetic carrier and have a wide range of values of χARM and χ are used to test the model.The model is used to interpret the magnetic variations observed, and the interpretations are supported by high-field hysteresis measurements of the same sediments. The combination of the high-field hysteresis method of Day et al. [1] and the χARM vs. χ method is a powerful technique allowing the rapid identification of both the relative grain size and domain state for large numbers of samples containing magnetite. The χARMvs.χ method should be used as an intial means of identifying distinct groups of samples.The high-field hysteresis method should then be applied to a few representative samples from each group to confirm the initial interpretation.  相似文献   
6.
Gediz Basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation have long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137Cs inventories of the samples using both proportional model (PM) and simplified mass balance model (SMBM). When PM was used, erosion and deposition rates varied from −15 to −28 t ha−1 year−1 and from +5 to +41 t ha−1 year−1, respectively; they varied from −16 to −33 t ha−1 year−1 and from +5 to +55 t ha−1 year−1 with SMBM. A good agreement was observed between the results of two models up to 30 t ha−1 year−1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137Cs techniques with the results obtained by universal soil loss equation (USLE) applied in the area before.  相似文献   
7.
We analyzed the waveforms of the small- to moderate-sized earthquakes that took place in the northern part of the inner Isparta Angle (IA) to retrieve their source parameters and combine these results with the focal mechanism solutions of the larger events that occurred in 2007 in E?irdir Lake at the apex of IA. In total, source mechanisms of 20 earthquakes within the magnitude range 3.5 < M < 5.0 were calculated using a regional moment tensor inversion technique. The inversion of the focal mechanisms yields an extensional regime with a NNE–SSW (N38°E) trending σ 3 axis. Inversion results are related to a mainly WNW–ESE oriented normal fault beneath E?irdir Lake. The R value of a NNE–SSW extensional regime is 0.562 showing a triaxial stress state in the region. The current stress regime results from complex subduction processes such as slab pull, slab break-off, roll-back and/or retreating mechanism along the Hellenic and Cyprus arcs and the southwestward extrusion of the Anatolian block since the early Pliocene.  相似文献   
8.
Petrographic data obtained from 182 surface sediment samples together with the available bathymetric data are used to investigate the effects of the last major sea-level changes on shelf evolution in the southern Sea of Marmara. Grain-size analysis reveals the presence of at least three belts or zones which are rich in coarse-grained (sand and gravel) sediments. These coarse-grained belts which are up to 45 km long, 15 km wide, show up to 20 m of relief and are presently found at 40–80 m (average 60 m) water depths. Based on microscopic examination and residual analysis, the sediments from these belts are interpreted as indicators of high-energy shallow waters where detrital siliciclastics, with some benthic contribution, accumulated. The presence of a 62–65 m deep sill in the Çanakkale Strait and the consideration of sea-level curves would suggest that the Marmara shelves must have been subaerially exposed down to −65 m water depths for about 10,000 yrs (22,000–12,000 yrs B.P.), sufficient time to modify former shelf topographies and form such bottom relief. While difficult to date, we believe that coarse-grained belts found on the southern Marmara shelf must be relict (i.e., former shorelines, beaches) and their formation is largely related to low stands of sea-level during the Late Pleistocene regression and early Holocene transgression. However, the available high-resolution seismic profiling data suggest that the neotectonism in this seismically active Sea of Marmara plays an important role to explain the raise of these older shorelines to their present levels on the sea-floor.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号