首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
大气科学   7篇
地球物理   5篇
地质学   2篇
海洋学   1篇
天文学   38篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   
2.
Shanmugaraju  A.  Moon  Y.-J.  Dryer  M.  Umapathy  S. 《Solar physics》2003,217(2):301-317
We present results from a study of sunspots and faculae on continuum and Caii K images taken at the San Fernando Observatory (SFO) during 1989–1992; a total of approximately 800 images in each bandpass were used. About 18000 red sunspots, 147000 red faculae, and 800000 Caii K faculae were identified based on their contrasts. In addition, we computed the contrasts of pixels on the red images cospatial with Caii K faculae. Sunspot contrasts show a strong dependence on size but no dependence on heliocentric angle. There are continuous but systematic differences among facular regions. We find that the contrast of Caii K faculae is relatively insensitive to heliocentric angle, but is a strong function of facular size, in the sense that larger Caii K faculae are always brighter. The contrast of red faculae is a function of both heliocentric angle and size: the contrast functions show that larger regions contain larger flux tubes, contain deeper flux tubes, and have larger filling factors than small facular regions. Comparisons of cospatial pixels on red and Caii K images show a tight correlation between the average contrast of a region in the continuum and its size and heliocentric angle in the Caii K images. The average contrast of all facular regions is positive everywhere on the disk, even though the largest regions contain flux tubes which appear dark at disk center.  相似文献   
3.
4.
We have studied the characteristics of coronal mass ejections (CMEs) associated with Deca-Hectometric (DH) type II radio bursts (1–14 MHz) in the interplanetary medium during the year 1997–2005. The DH CMEs are divided into two parts: (i) DH CMEs (All) and (ii) DH CMEs (Limb). We found that 65% (177/273) of all events have the speed >900 km?s?1 and the remaining 35% (96/273) events have the speed below 900 km?s?1. The average speed of all and limb DH CMEs are 1230 and 1288 km?s?1, respectively, which is nearly three times the average speed of general population of CMEs (473 km?s?1). The average widths of all and limb DH CMEs are 105° and 106°, respectively, which is twice the average width (52°) of the general population of CMEs. We found a better correlation between the speed and width of limb DH CMEs (R=?0.61) than all DH CMEs (R=?0.53). Only 28% (177/637) of fast >900 km?s?1 general population of CMEs are reported with DH type II bursts counterpart. The above results gives that the relation between the CME properties is better for limb events.  相似文献   
5.
We have analyzed a set of 147 metric Type II radio bursts observed by Culgoora radio spectrograph from November 1997 to December 2006. These events were divided into two sets: The first subset contains Type II events that started during the impulsive phase of the associated solar flares and the second subset contains those starting during the decaying phase of flares. Our main aim is to differentiate the metric Type IIs, flares and coronal mass ejections (CMEs) of these two subsets. It is found that while Type II burst characteristics of both subsets are very similar, there are significant differences between flare and CME properties for these two subsets. Considering all analyzed relationships between the characteristics of Type IIs, flares and CMEs in these two Type II subsets, we conclude that most of the coronal shocks causing metric Type II bursts are driven by CMEs, but that a fraction of events are probably ignited by solar flares.  相似文献   
6.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   
7.
We have analyzed a set of 25 interacting events which are associated with the DH type II bursts. These events are selected from the Coronal Mass Ejections (CMEs) observed during the period 1997–2010 in SOHO/LASCO and DH type IIs observed in Wind/WAVES. Their pre and primary CMEs from nearby active regions are identified using SOHO/LASCO and EIT images and their height–time diagrams. Their interacting time and height are obtained, and their associated activities, such as, flares and Solar Energetic Particles (>10 pfu) are also investigated. Results from the analysis are: primary CMEs are much faster than the pre-CMEs, their X-ray flares are also stronger (X- and M-class) compared to the flares (C- and M-class) of pre-CMEs. Most of the events (22/25) occurred during the period 2000–2006. From the observed width and speed of pre and primary CMEs, it is found that the pre-CMEs are found to be less energetic than the primary CMEs. While the primary CMEs are tracked up to the end of LASCO field of view (30 Rs), most of the pre-CMEs can be tracked up to <26 Rs. The SEP intensity is found to be related with the integrated flux of X-ray flares associated with the primary CMEs for nine events originating from the western region.  相似文献   
8.
Boreal summer intraseasonal (30–50 day) variability (BSISV) over the Asian monsoon region is more complex than its boreal winter counterpart, the Madden–Julian oscillation (MJO), since it also exhibits northward and northwestward propagating convective components near India and over the west Pacific. Here we analyze the BSISV in the CMIP3 and two CMIP2+ coupled ocean–atmosphere models. Though most models exhibit eastward propagation of convective anomalies over the Indian Ocean, difficulty remains in simulating the life cycle of the BSISV, as few represent its eastward extension into the western/central Pacific. As such, few models produce statistically significant anomalies that comprise the northwest to southeast tilted convection, which results from the forced Rossby waves that are excited by the near-equatorial convective anomalies. Our results indicate that it is a necessary, but not sufficient condition, that the locations the time-mean monsoon heat sources and the easterly wind shear be simulated correctly in order for the life cycle of the BSISV to be represented realistically. Extreme caution is needed when using metrics, such as the pattern correlation, for assessing the fidelity of model performance, as models with the most physically realistic BSISV do not necessarily exhibit the highest pattern correlations with observations. Furthermore, diagnostic latitude-time plots to evaluate the northward propagation of convection from the equator to India and the Bay of Bengal also need to be used with caution. Here, incorrectly representing extratropical–tropical interactions can give rise to “apparent” northward propagation when none exists in association with the eastward propagating equatorial convection. Despite these cautions, the use of multiple cross-checking diagnostics enables the fidelity of the simulation of the BSISV to be meaningfully assessed.  相似文献   
9.
A new digital radio spectrograph, the Madurai Solar Radio Spectrograph (MSRS), has been constructed at Madurai Kamaraj University, Madurai, India, and is being operated at the Radio Astronomy Centre, Ooty in southern India to observe solar bursts in the frequency range 30–80 MHz. The operation of the new instrument is briefly described. Observations of solar bursts by this instrument and the results from the preliminary analysis are presented.  相似文献   
10.
CMEs and flares are the two energetic phenomena on the Sun responsible for generating shocks. Our main aim is to study the relation between the physical properties of CMEs and flares associated with and without type II radio bursts. We considered a set of 290 SOHO/LASCO CMEs associated with GOES X-ray flares observed during the period from January 1997 to December 2000. The relationship between the flares and CMEs is examined for the two sets i) with metric-type IIs and ii) without metric-type IIs. Physical properties such as rise time, duration, and strength of the flares and width, speed, and acceleration of CMEs are considered. We examined the energy relationship and temporal relationship between the CMEs and flares. First, all the events in each group were considered, and then the limb events in each group were considered separately. While there is a relationship between the temporal characteristics of flares and CME properties in the case of with-type IIs, it is absent in the case of all without-type IIs. Among all the relations studied, the correlation between flare duration and CME properties is found to be highly significant compared to the other relations. Also, the relationship between flare strength and CME speed found in the with-type II events is absent in the case of all without-type II events. However, when the limb without-type II events (with reduced time window between flare and CME) are studied separately, we found the energy relationship and the temporal relationship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号