首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   1篇
天文学   24篇
  2016年   1篇
  2009年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
排序方式: 共有25条查询结果,搜索用时 281 毫秒
1.
2.
We study the formation and evolution of voids in the dark matter distribution using various simulations of the popular Λ cold dark matter cosmogony. We identify voids by requiring them to be regions of space with a mean overdensity of −0.8 or less – roughly the equivalent of using a spherical overdensity group finder for haloes. Each of the simulations contains thousands of voids. The distribution of void sizes in the different simulations shows good agreement when differences in particle and grid resolution are accounted for. Voids very clearly correspond to minima in the smoothed initial density field. Apart from a very weak dependence on the mass resolution, the rescaled mass profiles of voids in the different simulations agree remarkably well. We find a universal void mass profile of the form  ρ(< r )/ρ( r eff) ∝ exp[( r / r eff)α]  , where r eff is the effective radius of a void and  α∼ 2  . The mass function of haloes in voids is steeper than that of haloes that populate denser regions. In addition, the abundances of void haloes seem to evolve somewhat more strongly between redshifts ∼1 and 0 than the global abundances of haloes.  相似文献   
3.
4.
5.
We present a technique for estimating the mass in the outskirts of galaxy clusters where the usual assumption of dynamical equilibrium is not valid. The method assumes that clusters form through hierarchical clustering and requires only galaxy redshifts and positions on the sky. We apply the method to dissipationless cosmological N -body simulations where galaxies form and evolve according to semi-analytic modelling. The method recovers the actual cluster mass profile within a factor of 2 to several megaparsecs from the cluster centre. This error originates from projection effects, sparse sampling, and contamination by foreground and background galaxies. In the absence of velocity biases, this method can provide an estimate of the mass-to-light ratio on scales ∼1–10  h −1 Mpc where this quantity is still poorly known.  相似文献   
6.
We use numerical simulations of a (480 Mpc  h −1)3 volume to show that the distribution of peak heights in maps of the temperature fluctuations from the kinematic and thermal Sunyaev–Zeldovich (SZ) effects will be highly non-Gaussian, and very different from the peak-height distribution of a Gaussian random field. We then show that it is a good approximation to assume that each peak in either SZ effect is associated with one and only one dark matter halo. This allows us to use our knowledge of the properties of haloes to estimate the peak-height distributions. At fixed optical depth, the distribution of peak heights resulting from the kinematic effect is Gaussian, with a width that is approximately proportional to the optical depth; the non-Gaussianity comes from summing over a range of optical depths. The optical depth is an increasing function of halo mass and the distribution of halo speeds is Gaussian, with a dispersion that is approximately independent of halo mass. This means that observations of the kinematic effect can be used to put constraints on how the abundance of massive clusters evolves, and on the evolution of cluster velocities. The non-Gaussianity of the thermal effect, on the other hand, comes primarily from the fact that, on average, the effect is larger in more massive haloes, and the distribution of halo masses is highly non-Gaussian. We also show that because haloes of the same mass may have a range of density and velocity dispersion profiles, the relation between halo mass and the amplitude of the thermal effect is not deterministic, but has some scatter.  相似文献   
7.
Little is known about the statistics of gravitationally lensed quasars at large (7–30 arcsec) image separations, which probe masses on the scale of galaxy clusters. We have carried out a survey for gravitationally lensed objects, among sources in the FIRST 20-cm radio survey that have unresolved optical counterparts in the digitizations of the Palomar Observatory Sky Survey. From the statistics of ongoing surveys that search for quasars among FIRST sources, we estimate that there are about 9100 quasars in this source sample, making this one of the largest lensing surveys to date. Using broad-band imaging, we have isolated all objects with double radio components separated by 5–30 arcsec that have unresolved optical counterparts with similar BVI colours. Our criteria for similar colours conservatively allow for observational error and for colour variations due to time delays between lensed images. Spectroscopy of these candidates shows that none of the pairs are lensed quasars. This sets an upper limit (95 per cent confidence) on the lensing fraction in this survey of 3.3×10−4, assuming 9100 quasars. Although the source redshift distribution is poorly known, a rough calculation of the expected lensing frequency and the detection efficiencies and biases suggests that simple theoretical expectations are of the same order of magnitude as our observational upper limit. Our procedure is novel in that our exhaustive search for lensed objects does not require prior identification of the quasars in the sample as such. Characterization of the FIRST-selected quasar population will enable use of our result to constrain quantitatively the mass properties of clusters.  相似文献   
8.
We present a simple model for the shape of the distribution function of galaxy peculiar velocities. We show how both non-linear and linear theory terms combine to produce a distribution which has an approximately Gaussian core with exponential wings. The model is easily extended to study how the statistic depends on the type of particle used to trace the velocity field (dark matter particles, dark matter haloes, galaxies), and on the density of the environment in which the test particles are located. Comparisons with simulations suggest that our model is accurate. We also show that the evolution of the peculiar velocities depends on the local, rather than the global, density. Since clusters populate denser regions on average, using cluster velocities with the linear theory scaling may lead to an overestimate of the global value of Ω0. Conversely, using linear theory with the global value of Ω0 to scale cluster velocities from the initial to the present time results in an underestimate of their true velocities. In general, however, the directions of motions of haloes are rather well described by linear theory. Our results help to simplify models of redshift-space distortions considerably.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号