首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   6篇
天文学   37篇
自然地理   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1983年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
The results of a comprehensive field trial of nearly all commercially available directional wave measurement systems at the Edda field in the North Sea during winter 1985-86 are presented. The results summarize the accuracy of the principal engineering wave parameters from each system and the dependence on sea state. Limiting factors on system performance and operational problems are also included in the assessment. Overall experience has been good with systems utilizing widely different measurement principles returning consistent results.  相似文献   
2.
The lack of earthquake-induced liquefaction features in Late Wisconsin and Holocene sediments in Genesee, Wyoming, and Allegany Counties suggests that the Clarendon–Linden fault system (CLF) did not generate large, moment magnitude, M≥6 earthquakes during the past 12,000 years. Given that it was the likely source of the 1929 M 4.9 Attica earthquake, however, the Clarenden–Linden fault system probably is capable of producing future M5 events. During this study, we reviewed newspaper accounts of the 1929 Attica earthquake, searched for earthquake-induced liquefaction features in sand and gravel pits and along tens of kilometers of river cutbanks, evaluated numerous soft-sediment deformation structures, compiled geotechnical data and performed liquefaction potential analysis of saturated sandy sediments. We found that the 1929 M 4.9 Attica earthquake probably did not induce liquefaction in its epicentral area and may have been generated by the western branch of the Clarendon–Linden fault system. Most soft-sediment deformation structures found during reconnaissance did not resemble earthquake-induced liquefaction features, and even the few that did could be attributed to non-seismic processes. Our analysis suggests that the magnitude threshold for liquefaction is between M 5.2 and 6, that a large (M≥6) earthquake would liquefy sediments at many sites in the area, and that a moderate earthquake (M 5–5.9) would liquefy sediments at some sites but perhaps not at enough sites to have been found during reconnaissance. We conclude that the Clarendon–Linden fault system could have produced small and moderate earthquakes, but probably not large events, during the Late Wisconsin and Holocene.  相似文献   
3.
We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim [13] to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of [1]. To correctly retrieve the temperature structure and composition of the atmosphere to within 2 σ, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30 transits or eclipses of a GJ1214b-like planet.  相似文献   
4.
This paper summarizes 17 talks presented during the Technological sessions at the “Challenges in UV Astronomy” conference. It is based on summaries submitted by the presenters, on the slides of their talks, on notes written by the authors, and on additional material kindly submitted to the lead author. In many instances the summaries were written by the presenters themselves and are included as-submitted to the authors with just minor editorial interference. In other cases one of the editors wrote the summary based on their notes and on the files of the actual presentations. The contributions are placed in the general context of the current knowledge in the field. The sessions were devoted to: [a] detectors, [b] optics, [c] integration and verification procedures for vacuum UV instruments and [d] calibration and archival research. A cautionary note: this is not a regular article in these proceedings presenting one idea, an experiment, of a result. It is rather a distillation of what was presented at the NUVA/ESO/IAG meeting at the sessions deemed technological, therefore it will lack an overall coherence although the individual sections and subsections should be logically connected.  相似文献   
5.
The presence of heavy elements in the atmospheres of the hottest H-rich DA white dwarfs has been the subject of considerable interest. While theoretical calculations can demonstrate that radiative forces, counteracting the effects of gravitational settling, can explain the detections of individual species, the predicted abundances do not accord well with observation. However, accurate abundance measurements can only be based on a thorough understanding of the physical structure of the white dwarf photospheres, which has proved elusive. Recently, the availability of new non-local thermodynamic equilibrium model atmospheres with improved atomic data has allowed self-consistent analysis of the extreme ultraviolet (EUV), far UV and optical spectra of the prototypical object G191-B2B. Even so, the predicted and observed stellar fluxes remain in serious disagreement at the shortest wavelengths (below ≈190 Å), while the inferred abundances remain largely unaltered. We show here that the complete spectrum of G191-B2B can be explained by a model atmosphere where Fe is stratified, with increasing abundance at greater depth. This abundance profile may explain the difficulties in matching observed photospheric abundances, usually obtained by analyses using homogeneous model atmospheres, to the detailed radiative levitation predictions, particularly as the latter are only strictly valid for regions deeper than where the EUV/far UV lines and continua are formed. Furthermore, the relative depletion of Fe in the outer layers of the atmosphere may be evidence for radiatively driven mass-loss in G191-B2B.  相似文献   
6.
We have undertaken a detailed near-infrared spectroscopic analysis of eight notable white dwarfs, predominantly of southern declination. In each case the spectrum failed to reveal compelling evidence for the presence of a spatially unresolved, cool, late-type companion. Therefore, we have placed an approximate limit on the spectral type of a putative companion to each degenerate. From these limits we conclude that if GD659, GD50, GD71 or WD2359−434 possesses an unresolved companion then most probably it is substellar in nature  ( M < 0.072 M)  . Furthermore, any spatially unresolved late-type companion to RE J0457−280, RE J0623−374, RE J0723−274 or RE J2214−491 most likely has   M < 0.082 M  . These results imply that if weak accretion from a nearby late-type companion is the cause of the unusual photospheric composition observed in a number of these degenerates then the companions are of very low mass, beyond the detection thresholds of this study. Furthermore, these results do not contradict a previously noted deficit of very-low-mass stellar and brown dwarf companions to main sequence F, G, K and early-M type primaries ( a ≲ 1000 au).  相似文献   
7.
8.
9.
10.
This review considers the observations of hot, hydrogen-rich white dwarf stars, with particular reference to measurements of temperature, surface gravity and composition. Spectroscopic data from a variety of wavelength ranges are required for this work and, in particular, the important contributions from optical, ultraviolet and extreme ultraviolet studies are discussed. Using the values of Teff and log g determined for an individual white dwarf, estimates of mass and radius might be derived from the theoretical mass-radius relation. The issue of the accuracy of the theoretical mass-radius calculations and the prospects for making empirical tests using observational data are outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号