首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
天文学   9篇
  2018年   1篇
  2017年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   
2.
We have analyzed the intermediate-term periodicities in soft X-ray flare index (FISXR) during solar cycles 21, 22 and 23. Power-spectral analysis of daily FISXR reveals a significant period of 161 days in cycle 21 which is absent during cycles 22 and 23. We have found that in cycle 22 periodicities of 74 and 83 days are in operation. A 123-day periodicity has been found to be statistically significant during part of the current solar cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   
3.
4.
Emission-line stars in young open clusters are identified to study their properties, as a function of age, spectral type and evolutionary state. 207 open star clusters were observed using the slitless spectroscopy method and 157 emission stars were identified in 42 clusters. We have found 54 new emission-line stars in 24 open clusters, out of which 19 clusters are found to house emission stars for the first time. About 20 per cent clusters harbour emission stars. The fraction of clusters housing emission stars is maximum in both the 0–10 and 20–30 Myr age bin (∼40 per cent each). Most of the emission stars in our survey belong to Classical Be class (∼92 per cent) while a few are Herbig Be stars (∼6 per cent) and Herbig Ae stars (∼2 per cent). The youngest clusters to have Classical Be stars are IC 1590, NGC 637 and 1624 (all 4 Myr old) while NGC 6756 (125–150 Myr) is the oldest cluster to have Classical Be stars. The Classical Be stars are located all along the main sequence (MS) in the optical colour–magnitude diagrams (CMDs) of clusters of all ages, which indicates that the Be phenomenon is unlikely due to core contraction near the turn-off. The distribution of Classical Be stars as a function of spectral type shows peaks at B1–B2 and B6–B7 spectral types. The Be star fraction [N(Be)/N(B+Be)] is found to be less than 10 per cent for most of the clusters and NGC 2345 is found to have the largest fraction (∼26 per cent). Our results indicate there could be two mechanisms responsible for the Classical Be phenomenon. Some are born Classical Be stars (fast rotators), as indicated by their presence in clusters younger than 10 Myr. Some stars evolve to Classical Be stars, within the MS lifetime, as indicated by the enhancement in the fraction of clusters with Classical Be stars in the 20–30 Myr age bin.  相似文献   
5.
In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to the previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997–2000). The dominance of northern hemisphere shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.  相似文献   
6.
Joshi  Bhuwan  Joshi  Anita 《Solar physics》2004,219(2):343-356
In this paper the N—S asymmetry of the soft X-ray flare index (FI SXR) during solar cycles 21, 22 and 23 has been analyzed. The results show the existence of a real N—S asymmetry which is strengthened during solar minimum. The slope of regression lines fitted to the daily values of asymmetry time series is negative in all three cycles. The yearly asymmetry curve can be fitted by a sinusoidal function with a period of eleven years. The power spectral analysis of daily asymmetry time series reveals significant periods of around 28.26 days, 550.73 days and 3.72 years.  相似文献   
7.
Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.  相似文献   
8.
The evolution of an X2.7 solar flare, that occurred in a complex β γ δ magnetic configuration region on 3 November 2003 is discussed by utilizing a multi-wavelength data set. The very first signature of pre-flare coronal activity is observed in radio wavelengths as a type III burst that occurred several minutes prior to the flare signature in Hα. This type III burst is followed by the appearance of a loop-top source in hard X-ray (HXR) images obtained from RHESSI. During the main phase of the event, Hα images observed from ARIES solar tower telescope, Nainital, reveal well-defined footpoint (FP) and loop-top (LT) sources. As the flare evolves, the LT source moves upward and the separation between the two FP sources increases. The co-alignment of Hα with HXR images shows spatial correlation between Hα and HXR footpoints, whereas the rising LT source in HXR is always located above the LT source seen in Hα. The evolution of LT and FP sources is consistent with the reconnection models of solar flares. The EUV images at 195 Å taken by SOHO/EIT reveal intense emission on the disk at the flaring region during the impulsive phase. Further, slow-drifting type IV bursts, observed at low coronal heights at two time intervals along the flare period, indicate rising plasmoids or loop systems. The intense type II radio burst at a time in between these type IV bursts, but at a relatively greater height, indicates the onset of CME and its associated coronal shock wave. The study supports the standard CSHKP model of flares, which is consistent with nearly all eruptive flare models. More importantly, the results also contain evidence for breakout reconnection before the flare phase.  相似文献   
9.
We present a UBV CCD photometric study of four open clusters, NGC 7245, King 9, IC 166 and King 13, located between   l = 90°  and 135°. All are embedded in a rich Galactic field. NGC 7245 and King 9 are close together in the sky and have similar reddenings. The distances and ages are: NGC 7245, 3.8 ± 0.35 kpc and 400 Myr; King 9 (the most distant cluster in this quadrant), 7.9 ± 1.1 kpc and 3.0 Gyr. King 13 is 3.1 ± 0.3 kpc distant and 300 Myr old. King 9 and IC 166 (4.8 ± 0.5 kpc distant and 1 Gyr old) may be metal-poor clusters  ( Z = 0.008)  , as estimated from isochrone fitting. The average value of the distance of young clusters from the Galactic plane in the above longitude range and beyond 2 kpc (−47 ± 16 pc, for 64 clusters) indicates that the young disc bends towards the southern latitudes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号