首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   3篇
大气科学   1篇
地质学   3篇
天文学   11篇
综合类   1篇
  2019年   1篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有16条查询结果,搜索用时 24 毫秒
1.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   
2.
石雷石英闪长岩是赣南崇-余-犹地区比较特殊的闪长质侵入体。锆石的原位U-Pb定年表明,该岩体侵位于433.5±3.4Ma。全岩主量元素特征上显示出中偏酸性(SiO2=56.92%~64.70%),富Al(Al2O3=14.10%~14.83%),富碱(Alk=6.41%~7.40%)特别是富钾(K2O=3.86%~4.85%),镁、铁含量较高,MgO:3.47%~5.95%,FeOT:5.23%~8.14%以及低磷(P2O5=0.27%~0.4%)的特点;微量元素上主要富集K、Rb、Cs等大离子亲石元素和轻稀土元素,亏损Nb、Ta、Ti、P等高场强元素。磷灰石微量元素特征上显示高度富集稀土元素特别是轻稀土元素的特征;具有Eu的负异常(δEu=0.37~0.45)。ISr位于0.7073~0.7132之间,εNd(t)变化于-8.41~-4.97之间,两阶段钕模式年龄介于1.58~1.86Ga之间,Hf同位素组成相对均一,εHf(t)主要集中变化于-8~-2之间,两阶段Hf模式年龄加权平均为1.77±0.09Ga,这些特征都暗示了该石英闪长质岩体的形成是强烈壳幔相互作用的产物,区内加里东晚期可能发生了局部的岩石圈的减薄。  相似文献   
3.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   
4.
We report here the first detection of mono-deuterated acetylene (acetylene-d1, C2HD) in Titan's atmosphere from the presence of two of its emission bands at 678 and 519 cm−1 as observed in CIRS spectral averages of nadir and limb observations taken between July 2004 and mid-2007. By using new laboratory spectra for this molecule, we were able to derive its abundance at different locations over Titan's disk. We find the C2HD value () to be roughly constant with latitude from the South to about 45° N and then to increase slightly in the North, as is the case for C2H2. Fitting the 678 cm−1ν5 band simultaneously with the nearby C2H2 729 cm−1ν5 band, allows us to infer a D/H ratio in acetylene on Titan with an average of the modal values of 2.09±0.45×10−4 from the nadir observations, the uncertainties being mainly due to the vertical profile used for the fit of the acetylene band. Although still subject to significant uncertainty, this D/H ratio appears to be significantly larger than the one derived in methane from the CH3D band (upper limit of 1.5×10−4; Bézard, B., Nixon, C.A., Kleiner, I., Jennings, D.E., 2007. Icarus, 191, 397-400; Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C., Romani, P., Carlson, R., Flasar, M., Samuelson, R.E., Teanby, N., Irwin, P., Bézard, B., Orton, G., Kunde, V., Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F.W., Vinatier, S., 2007. Icarus 189, 35-62). From the analysis of limb data we infer D/H values of (at 54° S), (at 15° S), (at 54° N) and (at 80° N), which average to a mean value of 1.63±0.27×10−4.  相似文献   
5.
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.  相似文献   
6.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   
7.
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×1013 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO2 column densities peak over the South Pole. The total CO2 mass is (2.9±1.2)×1013 g. A possible cause for the HCN mass increase is its production from the photolysis of NH3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar (∼0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in Kyy) of wave-induced eddy mixing poleward of 40° and an equatorward transport with velocity. The CO2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO2 bulge is not properly matched. In contrast, the CO2 distribution can be fit by invoking poleward transport with a velocity and vigorous eddy mixing (). While the vertical distribution of CO2 is not measured, the combined HCN and CO2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO2 lies in the middle stratosphere near or below the 5-mbar level.  相似文献   
8.
The planet-encircling springtime storm in Saturn’s troposphere (December 2010–July 2011, Fletcher, L.N. et al. [2011]. Science 332, 1413–1414; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71–74; Fischer, G. et al. [2011]. Nature 475, 75–77) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA’s IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35°N (B1 and B2) between January–April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single ‘stratospheric beacon’ near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85 km) post-merger; and (III) the mature phase characterised by slow cooling (0.11 ± 0.01 K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6 ± 1.4 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2 mbar, moving west with a near-constant velocity of 2.70 ± 0.04 deg/day (?24.5 ± 0.4 m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period.With no direct tracers of motion in the stratosphere, we use thermal windshear calculations to estimate clockwise peripheral velocities of 200–400 m/s at 2 mbar around B0. The peripheral velocities of the two original airmasses were smaller (70–140 m/s). In August 2011, the size of the vortex as defined by the peripheral collar was 65° longitude (50,000 km in diameter) and 25° latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. The passage of B0 generated a new band of warm stratospheric emission at 0.5 mbar at its northern edge, and there are hints of warm stratospheric structures associated with the beacons at higher altitudes (p < 0.1 mbar) than can be reliably observed by CIRS nadir spectroscopy. Analysis of the zonal windshear suggests that Rossby wave perturbations from the convective storm could have propagated vertically into the stratosphere at this point in Saturn’s seasonal cycle, one possible source of energy for the formation of these stratospheric anticyclones.  相似文献   
9.
We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft during the Titan flybys T0-T10 (July 2004-January 2006). The spectra characterize various regions on Titan from 70° S to 70° N with a variety of emission angles. We study the molecular signatures observed in the mid-infrared CIRS detector arrays (FP3 and FP4, covering roughly the 600-1500 cm−1 spectral range with apodized resolutions of 2.54 or 0.53 cm−1). The composite spectrum shows several molecular signatures: hydrocarbons, nitriles and CO2. A firm detection of benzene (C6H6) is provided by CIRS at levels of about 3.5×10−9 around 70° N. We have used temperature profiles retrieved from the inversion of the emission observed in the methane ν4 band at 1304 cm−1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. No longitudinal variations were found for these gases. Little or no change is observed generally in their abundances from the south to the equator. On the other hand, meridional variations retrieved for these trace constituents from the equator to the North ranged from almost zero (no or very little meridional variations) for C2H2, C2H6, C3H8, C2H4 and CO2 to a significant enhancement at high northern (early winter) latitudes for HCN, HC3N, C4H2, C3H4 and C6H6. For the more important increases in the northern latitudes, the transition occurs roughly between 30 and 50 degrees north latitude, depending on the molecule. Note however that the very high-northern latitude results from tours TB-T10 bear large uncertainties due to few available data and problems with latitude smearing effects. The observed variations are consistent with some, but not all, of the predictions from dynamical-photochemical models. Constraints are set on the vertical distribution of C2H2, found to be compatible with 2-D equatorial predictions by global circulation models. The D/H ratio in the methane on Titan has been determined from the CH3D band at 1156 cm−1 and found to be . Implications of this deuterium enrichment, with respect to the protosolar abundance on the origin of Titan, are discussed. We compare our results with values retrieved by Voyager IRIS observations taken in 1980, as well as with more recent (1997) disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to better comprehend the physical phenomena on Titan.  相似文献   
10.
西秦岭勉略带陆内构造变形研究   总被引:12,自引:3,他引:9  
陈虹  胡健民  武国利  高卫 《岩石学报》2010,26(4):1277-1288
秦岭造山带勉略缝合带是古特提斯洋盆向北俯冲形成的华北与华南最后拼接带。这个主缝合带俯冲-碰撞过程中以由北向南的一系列韧性逆冲推覆构造为特征,形成由前泥盆系、泥盆-石炭系和蛇绿混杂岩等不同构造岩片叠置的复杂构造带,碰撞时代从245Ma一直延续到230Ma左右。最近,作者对勉略缝合带内发育的韧性和脆性左行走滑剪切变形进行了研究,结果表明这些顺造山带的左行韧性走滑剪切变形带的变形时代为223±2Ma,与碰撞后花岗岩所确定的碰撞后构造环境的起始时间(225Ma)一致,显示这些韧性走滑剪切变形带是勉略带陆内变形初期变形产物。亦即华北、扬子大陆碰撞之后很快就转入陆内变形阶段,并且是以顺造山带的侧向走滑位移为主要变形方式。勉略带内顺造山带的脆性左行走滑断层的发育,表明这种顺造山带的侧向位移过程从深部到地壳浅层是一致的。因此,大陆碰撞在直接碰撞之后很快转变为顺造山带的侧向走滑位移为主的陆内变形,这种位移可能表现为两个大陆碰撞后的相对走滑,或是碰撞带中强烈变形部分顺造山带的侧向挤出,从而消减了正向碰撞所造成的地壳缩短和增厚。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号