首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
大气科学   2篇
地球物理   1篇
地质学   12篇
海洋学   2篇
自然地理   4篇
  2011年   1篇
  2009年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1957年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
The sandstones and coquinas of the upper 20 m of the Sundance Formation are interpreted as a tidal inlet, back-barrier shoal and sandy tidal-flat sequence deposited at the close of marine Jurassic sedimentation in north-central Wyoming. The barrier strandline maintained a generally E-W trend as it prograded to the north. The lateral migration of inter-barrier tidal inlets along the regressive shoreline of the late Sundance sea caused the coquinas and sandstones of the uppermost Sundance Formation to be deposited as tabular, laterally-extensive units. Tidal bundles, sigmoidal reactivation surfaces, herringbone cross-lamination and abundant mud drapes within the sandstones are evidence of considerable tidal influence during the deposition of the uppermost Sundance Formation. Earlier models, which attach an offshore environment of deposition to the sequence, do not explain the tabular geometries of the sandstone and coquina units and their conformable stratigraphic relationship with the overlying non-marine sediments of the Morrison Formation.  相似文献   
2.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   
3.
The late Weichselian sequence in the northern part of the Norwegian Trench is composed of eight units. The two lowermost units are massive, firm to stiff diamictons, interpreted to have been deposited beneath ice-streams that in all likelihood reached the shelf edge. They are overlain by glaciomarine and normal-marine sediments deposited after 15000BP. The first phase of glacial retreat from the Norwegian Trench (15000–14800 BP) was very rapid and left a thin layer of proximal sediments on top of the tills. This was followed by a period with lower accumulation rates (14800–13600 BP), probably as a result of rapid source retreat and cold meltwater inhibiting dropstone fall-out. The end of this interval marks the change from ice-stream calving in cold water to melting on land. According to lithologic and isotopic data, the maximum rate of Fennoscan-dian ice-sheet disintegration took place around 12500 BP. The water temperatures declined significantly and rates of sedimentation and ice-rafting fell in association with the Younger Dryas period. The final retreat of the ice began as early as 10 500 BP, and the transition to normal-marine sedimentation is reflected by precipitation of iron oxide followed by pyrite, reduced sedimentation rates, and a change from terrigenous to biogenic sedimentation.  相似文献   
4.
5.
6.
The volume %, distribution, texture and composition of coexistingolivine, Cr-spinel and glass has been determined in quenchedlava samples from Hawaii, Iceland and mid-oceanic ridges. Thevolume ratio of olivine to spinel varies from 60 to 2800 andsamples with >0·02% spinel have a volume ratio ofolivine to spinel of approximately 100. A plot of wt % MgO vsppm Cr for natural and experimental basaltic glasses suggeststhat the general trend of the glasses can be explained by thecrystallization of a cotectic ratio of olivine to spinel ofabout 100. One group of samples has an olivine to spinel ratioof approximately 100, with skeletal olivine phenocrysts andsmall (<50 µm) spinel crystals that tend to be spatiallyassociated with the olivine phenocrysts. The large number ofspinel crystals included within olivine phenocrysts is thoughtto be due to skeletal olivine phenocrysts coming into physicalcontact with spinel by synneusis during the chaotic conditionsof ascent and extrusion. A second group of samples tend to havelarge olivine phenocrysts relatively free of included spinel,a few large (>100 µm) spinel crystals that show evidenceof two stages of growth, and a volume ratio of olivine to spinelof 100 to well over 1000. The olivine and spinel in this grouphave crystallized more slowly with little physical interaction,and show evidence that they have accumulated in a magma chamber. KEY WORDS: olivine; spinel; basalt glass; volume %; cotectic  相似文献   
7.
The stability of sublittoral, fine-grained sediments in a subarctic estuary   总被引:1,自引:0,他引:1  
The erodibility of natural estuarine sediments was measured in sit along a longitudinal transect of Manitounuk Sound, Hudson Bay, using the benthic flume Sea Carousel. Sedimentation processes along the transect varied from continuous, rapid, post-glacial sedimentation in the inner Sound, to glacial outcrops and seabed reworking of the outer Sound. The grain size and physical bulk properties reflect changes in depositional environment and correlate with sediment erosion threshold stress (τc), erosion rate (E), erosion type and still-water mass settling rate. There was a steady increase in τc (0·8–2·0 Pa) with distance down the Sound in parallel with the decreasing sedimentation rate (0·003–0·001 m yr?1) and increasing sediment bulk density (1650–2010 kg m?3). The near-surface friction coefficient varied up to 68° in proportion to the clay content of post-glacial material. Glacial sediments were characterized by variable results and generally higher friction coefficients. Seabed erosion in Sea Carousel began with surface creep of loose aggregates, pellets and organic debris. This was followed by Type I bed erosion at rates that varied between 0·0002 and 0·0032 kg m?2 s?1 (mean 0·0015). Type I peak erosion rate was inversely related to applied bed shear stress (τo). Type II erosion succeeded Type I, often after a broad transitional period. Simulations of suspended sediment concentration in Sea Carousel were made using four commonly used erosion (E) algorithms. The best results were obtained using Krone's dimensionless ratio relationship: E=Moc-1). Simulations were highly sensitive to the definition of erosion threshold with sediment depth [τc(z)]. Small errors in definition of τc(z) caused large errors in the prediction of suspended sediment concentration which far exceeded differences between the methods tested.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号