首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
大气科学   1篇
天文学   22篇
  2015年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2005年   1篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Visual and infrared observations were made of Amor asteroid 1982 DV during its discovery apparition. Broadband visual and near-infrared photometry shows that it is an S-class asteroid. Narrowband spectrophotometry shows an absorption feature due to olivine or pyroxene or both centered at 0.93 μm. Applying a nonrotating thermal model to 10-μm photometry, the geometric albedo is calculated to be approximately 0.27. The geometric albedo for a slowly rotating, rocky surface was calculated for 1 night to be 0.15, consistent with S-class asteroid albedos. Thus, 1982 DV is either one of the most reflective S-class asteroids known, or a significant amount of bare rock is exposed on the asteroid's surface. For the nonrotating model, ellipsoidal dimensions for 1982 DV are 3.5 × 1.4 × 1.4 km.  相似文献   
2.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   
3.
We present an analysis of OH, CN, and C2 jets observed in thecoma of Comet Hale–Bopp on UT April 22, 23, and 25, 1997. Monte Carlomodels designed to simulate the gas jets were employed to analyze thenuclear active areas responsible for the observed coma gas jets. Ourresults indicate that four active areas are necessary to reproduce theCN and C2 jets while five active areas are required to simulatethe OH jets. The additional OH active area must produce significantlevels of OH, but cannot emit measurable quantities of either carbonradical. This difference suggests that the nucleus of Comet Hale–Boppis chemically heterogeneous.  相似文献   
4.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   
5.
We present near infrared reflectance spectra from 0.8 to 2.5 μm of two asteroids with low Tisserand invariant, 1373 Cincinnati and 2906 Caltech. We compare our spectra with cometary nuclei and other asteroids in their class. Asteroids Cincinnati and Caltech have Tisserand invariant values of 2.72 and 2.97, respectively, values less than 3 are considered suggestive of cometary origin. The observed spectral slopes in the near-infrared are consistent with both the spectra of cometary nuclei and of primitive asteroids. However, both asteroids have features in the near-infrared that are not seen in cometary nuclei, but are present in other X-type asteroids. 1373 Cincinnati has a sharp slope change between 0.75 and 1.0 μm and 2906 Caltech has a broad and shallow absorption between 1.35 and 2.2 μm. Our attempts to model the visible and near-infrared spectrum of these two objects, with the components successfully used by Emery and Brown (2004, Icarus 164, 104–121) to fit Trojan asteroids, did not yield acceptable fits.Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract to the National Aeronautics and Space Administration.  相似文献   
6.
We report the identification of gas jets in comet Hale-Bopp in OH, NH, CN, C2 and C3. This is the first time OH and NH jets without an obvious optical dust jet counterpart have been identified in narrowband comet images. We also confirm the existence of CN jets as reported by Larson et al. (1997) and Mueller et al. (1998). Jet features can be seen in the March and April 1997 datasets, approximately a month before and after perihelion. Our results contribute to the understanding of both the chemical properties of the comet as well as the physical mechanisms necessary to produce these features. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
There is evidence that space energy sources could give place to the appearance of phosphorylated nucleosides outside of Earth. These compounds may have been delivered mainly by interplanetary dust particles due to the lower temperatures experienced during atmospheric deceleration and impacts to the terrestrial surface. In this report, we communicate the results of pyrolytic studies to simulate atmospheric survivability of adenosine-5′-diphosphates (ADP) (and adenosine-5′-monophosphate, adenosine and adenine as degradation products) at temperatures <500°C and at various time intervals. Our results revealed that phosphorylated and non-phosphorylated nucleosides transported by IDPs having sizes of 10−6- could resist temperatures up to 500°C generated during atmospheric entry. However, atmospheric passage should not exceed a time due to the thermal lability of these molecules. Because of the high half-life showed by ADP in the presence of meteoritic powder, it is thought that extraterrestrial delivery of very complex biomolecules is more suitable under such protected conditions. These data indicate that the formation of a Fe2+- and/or Ca2+-complex could increase the stability of the molecules in the presence of meteoritic matter. Therefore, if the synthesis of nucleosides, nucleotides or oligonucleotides could take place in icy bodies, then micron-sized dust could have contributed significantly to the availability of phosphorylated nucleosides in the early Earth or in extrasolar early Earth-like planets, and thereby could have allowed the arising of an early biological activity.  相似文献   
8.
Direct observations of the nuclear surfaces of comets have been difficult; however a growing number of studies are overcoming observational challenges and yielding new information on cometary surfaces. In this review, we focus on recent determinations of the albedos, reflectances, and thermal inertias of comet nuclei. There is not much diversity in the geometric albedo of the comet nuclei observed so far (a range of 0.025 to 0.06). There is a greater diversity of albedos among the Centaurs, and the sample of properly observed TNOs(2) is still too small. Based on their albedos and Tisser and invariants, Fernández et al. (2001) estimate that about 5% of the near-Earth asteroids have a cometary origin, and place an upper limit of 10%. The agreement between this estimate and two other independent methods provide the strongest constraint to date on the fraction of objects that comets contribute to the population of near-Earth asteroids. There is a diversity of visible colors among comets, extinct comet candidates, Centaurs and TNOs. Comet nuclei are clearly not as red as the reddest Centaurs and TNOs. What Jewitt (2002) calls ultra-red matter seems to be absent from the surfaces of comet nuclei. Rotationally resolved observations of both colors and albedos are needed to disentangle the effects of rotational variability from other intrinsic qualities. New constraints on thermal inertia of comets are consistent with previous independent estimates. The thermal inertia estimates for Centaurs 2060 Chiron and 8405 Asbolus are significantly lower than predicted by thermal models, and also lower than the few upper limits or constraints known for active, ordinary nuclei.  相似文献   
9.
Nearly simultaneous photometry of the reflected and thermal infrared spectra of periodic comets Encke, Chernykh, Kearns-Kwee, Stephan-Oterma, and Tuttle are presented. The 10-μm, silicate emission feature has been detected for the first time in periodic comets and was observed in three of these objects. The albedo of the dust particles in the comae of these comets is calculted and compared to that of Comet Kohoutek. The peculiar behavior of the dust in Comet Encke is discussed.  相似文献   
10.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号