首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
地质学   10篇
海洋学   6篇
天文学   25篇
自然地理   1篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有42条查询结果,搜索用时 156 毫秒
1.
Heavy metals distribution in agricultural topsoils in urban area   总被引:24,自引:0,他引:24  
Intensive urbanisation of the Croatian capital of Zagreb has led to a situation where very good agricultural soils, developed mostly on Pleistocene eolian sediments and alluvial and proluvian Holocene sediments are entrapped within urban and suburban areas. Therefore the influence of urban and industrialised environments on the accumulation of metals in agricultural topsoils has been investigated. On an area of 860 km2 of the wider Zagreb region, 331 samples were taken according to a regular 1ǵ km square mesh. Samples were dissolved in aqua regia and analysed for Cd, Cu, Fe, Mn, Ni, Pb and Zn with flame atomic aqua regia absorption spectroscopy. The following concentration ranges have been determined: Cd 0.25-3.85 mg kg-1 (average 0.66 mg kg-1), Cu 4.30-183 mg kg-1 (average 20.8 mg kg-1), Fe 5.8-51.8 g kg-1 (average 27 g kg-1), Mn 79.2-1282 mg kg-1 (average 613 mg kg-1), Ni 0.70-282 mg kg-1 (average 49.5 mg kg-1), Pb 1.50-139 mg kg-1 (average 25.9 mg kg-1), and Zn 15.2-277 mg kg-1 (average 77.9 mg kg-1). Visualisation of the spatial data is made by the aid of GIS, and selected maps of the heavy metal concentrations in topsoils are displayed. Statistical multivariate analysis was carried out for quantitative study and data were processed by means of R-mode factor analysis, applying the varimax-raw rotational technique. F1, which grouped Cd, Pb, Cu, Zn and partially Ni, is characterized as a factor with strongly scattered anthropogenic influence. The elements in F2, Fe, Mn and partially Ni are mainly of geogenic, i.e. pedogenic, origin. The variations in concentrations of the investigated elements are thus of both natural and anthropogenic origins. The variations in the main soil constituents, particularly Fe and Mn, are determined primarily by the composition of different regolithic substrates of the fluvial origin in recent pedogenesis. High concentrations of nickel are also related to morphogenetic characteristics of the wider region, primarily basic and ultrabasic magmatic rocks of the surrounding mountain range. It is, however, assumed that the anomalous nickel concentrations in the vicinity of the highway and the airport are of anthropogenic origin, i.e. caused by fuel combustion. Copper is characterized by strongly scattered anthropogenic influence, which is related particularly to uncontrolled solid waste disposals or discharges of liquid waste from households or agricultural enterprises. With Zn, Pb and Cd, there are two possible ways of diffuse pollution. The Sava River, which drains the area and feeds the abundant Quaternary aquifer spreading below the major part of the investigated agricultural areas, has been exposed to intensive pollution by mining, industry and cities in the recent history. The part of the area with the highest determined concentrations of Zn, Pb and Cd was repeatedly flooded as recently as the previous decade; therefore, the recent sedimentation of the river deposits exposed to pollution is a very probable cause of the accumulation of metals in this until recently inundation area. The other way is atmospheric deposition of particles from urban sources (industrial emission, traffic, waste disposals, heating plants, etc.). In addition to agricultural enterprises, several economically important, but ecologically risky, facilities are situated in the vicinity of the water-protection area. The area is intersected by a very busy ring road, while a marshalling yard, the city dump, pharmaceutical and chemical industry, the district-heating plant and the airport are all located in close proximity. The geochemical maps show a clear relationship between human activities and metal concentration gradients.  相似文献   
2.
3.
Whereas the data on mesozooplankton in the epipelagic offshore Mediterranean Sea are extensive, less information is available about plankton in the deeper layers. The present study aims to describe the vertical and horizontal structure and distribution of mesozooplankton species and their associations down to 1,200 m in the water of the Southern Adriatic Sea. Zooplankton were sampled using a Nansen net of 200‐μm mesh size during two cruises in the winters of 2015 and 2016, extending from the coast to the open sea. In total, 203 zooplankton taxa were identified. The community was dominated by copepods, representing between 67% and 91% of the total abundance. The highest total densities were recorded in the upper layers where a high proportion (up to 36%) of appendicularians was also observed in the first sampled year. Five groups of samples were determined based on their community structure. In 2015 communities were distinct between the 0 and 50 m layer and the underlying one (50–100 m), whereas in 2016 epipelagic waters were inhabited by a more uniform mesozooplankton community. The mesopelagic and deep‐water fauna, especially copepods, showed a relatively stable composition in both sampling years Overall, our study confirms the oligotrophic character of the Southern Adriatic, with occasional density outbreaks of appendicularians under favourable conditions.  相似文献   
4.
5.
6.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   
7.
8.
9.
10.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号