首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1704篇
  免费   64篇
  国内免费   8篇
测绘学   26篇
大气科学   134篇
地球物理   413篇
地质学   604篇
海洋学   168篇
天文学   314篇
综合类   8篇
自然地理   109篇
  2021年   12篇
  2020年   15篇
  2019年   19篇
  2018年   39篇
  2017年   22篇
  2016年   50篇
  2015年   22篇
  2014年   50篇
  2013年   70篇
  2012年   53篇
  2011年   69篇
  2010年   86篇
  2009年   90篇
  2008年   71篇
  2007年   73篇
  2006年   80篇
  2005年   54篇
  2004年   62篇
  2003年   46篇
  2002年   38篇
  2001年   31篇
  2000年   24篇
  1999年   22篇
  1998年   24篇
  1997年   13篇
  1996年   42篇
  1995年   19篇
  1994年   18篇
  1993年   18篇
  1992年   20篇
  1991年   16篇
  1990年   15篇
  1989年   12篇
  1988年   17篇
  1987年   17篇
  1986年   14篇
  1985年   34篇
  1984年   28篇
  1983年   36篇
  1982年   37篇
  1981年   28篇
  1980年   23篇
  1979年   35篇
  1978年   28篇
  1977年   18篇
  1976年   22篇
  1975年   21篇
  1974年   27篇
  1973年   30篇
  1972年   11篇
排序方式: 共有1776条查询结果,搜索用时 102 毫秒
1.
During the Second World War, the Allied invasion of the French coast of Normandy on D‐Day, 6 June 1944, was the greatest amphibious assault in world history. An article in Geology Today (v.11, for 1995, pp.58–63) marked the 50th anniversary of the end of the war in Europe, on 8 May 1945, by describing how British military geologists had participated in planning for D‐Day and in the NW Europe campaign that followed it. The work of these geologists provides a classic case history, revealing that ‘military geology’ has many potential applications. Geological factors influenced site selection for temporary airfields, predictions of trafficability for the Normandy beaches, the development of potable water supplies, and quarrying for road metal—and more besides. This new article helps to mark the 75th anniversary of D‐Day by further details of how geologists and geology contributed to Allied victory.  相似文献   
2.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
3.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   
4.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   
5.
6.
7.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   
8.
Sediment has accumulated in Isfjorden, a deep fjord in Spitsbergen, at a rate of 1.7 km3/k.y. during the past 13 k.y. Between 200 ka and 13 ka the fjord was free of ice for 120 k.y. Assuming a similar sediment delivery rate during this ice-free time, 200 km3 of sediment would have accumulated in the fjord. An alternative calculation based on erosion rates suggests that 400 km3 could have been delivered to Isfjorden during this 120 k.y.Seismic studies have identified a 330 km3 package of sediment on the continental shelf and slope west of Isfjorden. This sediment is believed to have accumulated between 200 ka and 13 ka. Herein we argue that this is sediment that was originally deposited in the fjord, and that it was transferred to the shelf by glaciers in the 70 ka during which the fjord was occupied by ice. Calculations using a steady-state numerical model suggest that the sediment could have been moved in a deforming layer of subglacial till and in subglacial melt streams at rates of 7.6 × 106 m3 a−1 and 0.3 × 106 m3 a−1, respectively, resulting in a total flux of 7.9 × 106 m3 a−1. It is unlikely that much sediment was moved in a basal layer of dirty ice, as intense basal melting would have inhibited sediment entrainment.Of the time that glaciers occupied the fjord, 60% would have been required to evacuate the accumulated sediment. During the remaining time, the ice could have been deepening the fjord.  相似文献   
9.
10.
High-resolution paleoenvironmental data from a peat profile with a small pollen source area are used to reconstruct the impacts of landnám on vegetation and soils at a Norse farm complex (∅2 at Tasiusaq) comprising two farms in the Eastern Settlement of Greenland. Analyses include the AMS 14C dating of plant macrofossil samples and the use of Bayesian radiocarbon calibration to construct improved age-depth models for Norse cultural horizons. The onset of a regional landnám may be indicated by the clearance of Betula pubescens woodland immediately prior to local settlement. The latter is dated to AD 950-1020 (2σ) and is characterised by possible burning of Betula glandulosa scrub to provide grassland pasture for domestic stock. Clearance and grazing resulted in accelerated levels of soil erosion at a westerly farm. This was followed by an easterly migration of settlement and agriculture. Site constraints prevent an assessment of the demise of the easterly farm, but pressures of overgrazing and land degradation may have been the major factors responsible for the abandonment of the earlier farm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号