首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
大气科学   2篇
地质学   7篇
天文学   45篇
  2022年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1972年   1篇
  1970年   1篇
排序方式: 共有54条查询结果,搜索用时 93 毫秒
1.
It has been shown by Brown and Emslie (1988) that any optically thin thermal bremsstrahlung source must emit an energy spectrumL () (keV s–1 keV–1) which has the property that higher derivatives alternate in sign, i.e., (–) j L(j)() > 0 for allj. In this short note, we apply this test to the superhot component discussed by Linet al. (1981) in order to determine whether a strictly thermal interpretation of this component is valid. We find that all statistically significant higher derivatives do indeed have the correct sign; this strengthens the identification of this component as due to a thermal source.Presidential Young Investigator.  相似文献   
2.
A comparison is made between the flux-versus-time profile in the EUV band and the thick target electron flux profile as inferred from hard X-rays for a number of moderately large solar flares. This complements Kane and Donnelly's (1971) study of small flares. The hard X-ray data are from ESRO TD-1A and the EUV inferred from SFD observations.Use of a 2 minimising method shows that the best overall fit between the profile fine structures obtains for synchronism to 5 s which is within the timing accuracy. This suggests that neither conduction nor convection is fast enough as the primary mechanism of energy transport into the EUV flare and rather favours heating by the electrons themselves or by some MHD wave process much faster than acoustic waves.The electron power deposited, for a thick target model, is however far greater than the EUV luminosity for any reasonable assumptions about the area and depth over which EUV is emitted. This means that either most of the power deposited is conducted away to the optical flare or that only a fraction 1–10% of the X-ray emitting electrons are injected downwards. Recent work on H flare heating strongly favours the latter alternative - i.e. that electrons are mostly confined in the corona.  相似文献   
3.
Olivine-liquid equilibrium   总被引:6,自引:5,他引:6  
A number of experiments have been conducted in order to study the equilibria between olivine and basaltic liquids and to try and understand the conditions under which olivine will crystallize. These experiments were conducted with several basaltic compositions over a range of temperature (1150–1300° C) and oxygen fugacity (10?0.68–10?12 atm.) at one atmosphere total pressure. The phases in these experimental runs were analyzed with the electron microprobe and a number of empirical equations relating the composition of olivine and liquid were determined. The distribution coefficient 1 $$K_D = \frac{{(X_{{\text{FeO}}}^{{\text{Ol}}} )}}{{(X_{{\text{FeO}}}^{{\text{Liq}}} )}}\frac{{(X_{{\text{MgO}}}^{{\text{Liq}}} )}}{{(X_{{\text{MgO}}}^{{\text{Ol}}} )}}$$ relating the partioning of iron and magnesium between olivine and liquid is equal to 0.30 and is independent of temperature. This means that the composition of olivine can be used to determine the magnesium to ferrous iron ratio of the liquid from which it crystallized and conversely to predict the olivine composition which would crystallize from a liquid having a particular magnesium to ferrous iron ratio. A model (saturation surface) is presented which can be used to estimate the effective solubility of olivine in basaltic melts as a function of temperature. This model is useful in predicting the temperature at which olivine and a liquid of a particular composition can coexist at equilibrium.  相似文献   
4.
We examine the possibility that the strong heating produced at temperature-minimum levels during solar flares is due to resistive dissipation of Alfvén waves generated by the primary energy release process in the corona. It is shown how, for suitable parameters, these waves can carry their energy essentially undamped into the temperature-minimum layers and can then produce a degree of heating consistent with observations.Also Department of Applied Physics, Stanford University.  相似文献   
5.
Using observations of both hard X-rays and γ-rays in the large solar flare on June 7, 1980, we infer the amount of chromospheric heating due to bombardment both by non-thermal electrons and by protons, respectively. If a thick-target model for the X-ray bremsstrahlung is adopted, then proton heating is shown to be important only in the lower chromosphere; however, if the hard X-rays are substantially thermal in origin, then proton heating may play an important or indeed dominant role in determining the structure of the entire flaring chromosphere.  相似文献   
6.
We examine a number of high time resolution intensity-time profiles of EUV impulsive bursts as observed by the Harvard College Observatory EUV Spectroheliometer carried aboard the Skylab Apollo Telescope Mount. These bursts are found to be synchronous (to within the instrumental time resolution of 5.5 s) in all wavelengths observed, corresponding to emissions from temperatures ranging from upper chromospheric to coronal. The distribution with temperature of a suitably defined emission measure parameter is also examined as a function of time throughout the bursts and a marked similarity in the shape of this distribution, both between different events and throughout the time history of any particular event, is noted. The significance of these observations for physical processes associated with EUV bursts is briefly discussed.On leave from Dept. of Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.  相似文献   
7.
We examine the linear growth of density perturbations in homogeneous isotropic (Friedmann) model universes, including the effect of a decoupled radiation pressure field in the modelling. Amplification factors for density perturbations in all models are derived numerically, and it is shown that the effect of radiation pressure is to decelerate the growth of such condensations, thus requiring larger inhomogeneities to be produced at radiation decoupling in order to produce protogalaxies.  相似文献   
8.
The history of solar flare X-ray polarimetry is reviewed and it is shown that as yet, there is no experimental evidence for such polarization. The present experimental limits are at the level of a few percent but these results may be biased by a large thermal component at low energies which may decrease the apparent polarization. To avoid this difficulty it will be necessary to make observations at higher energies where thermal emission is less important.The theoretical estimates of the polarization expected in the solar flare are also reviewed. The best present theoretical estimates are in the range of a few percent and are consistent with the present experimental limits.In this paper we discuss a new satellite instrument that has sufficient sensitivity at high energies to detect the polarization that is predicted by the present theories. The instrument sensitivity for a moderate (M class) event approaches polarization levels of 1% in each of 7 energy bins spanning the 10 to 100 keV range for integration times as short as 10 s. Comparable results can be obtained for an X class flare in 1 s.Presidential Young Investigator.  相似文献   
9.
Here we complete an energy balance analysis of a double impulsive hard X-ray flare. From spatial observations, we deduce both flares probably occur in the same loop within the resolution of the data. For the first flare, the energy in the fast electrons (assuming a thick-target model) is comparable to the convective up-flow energy, suggesting that these are related successive modes of energy storage and transfer. The total energy lost through radiation and conduction, 2.0 × 1028 erg, is comparable to the energy in fast electrons 2.5 × 1028 erg. For the second flare, the energy in the fast electrons is more than one order of magnitude greater than the energy of the convective up-flow. Total energy losses are within a factor of two lower than the calculated fast electron energy. We interpret the observations as showing that the first flare occurred in a small loop with fast electrons heating the chromosphere and resulting in chromospheric evaporation increasing the density in the loop. For the second flare most of the heating occurred at the electron acceleration site. The two symmetrical components of the Ca xix resonance line and a high velocity down-flow of 115 km s –1 observed at the end of the second hard X-ray burst are consistent with the flare eruption (reconnection) region being high in the flare loop. The estimated altitude of the acceleration site is 5500 km above the photosphere.  相似文献   
10.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号