首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
天文学   28篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
排序方式: 共有28条查询结果,搜索用时 62 毫秒
1.
We report on the metal distribution in the intracluster medium around the radio galaxy 4C+55.16     observed with the Chandra X-ray Observatory . The radial metallicity profile shows a dramatic change at 10 arcsec (∼50 kpc) in radius from half solar to twice solar at inner radii. Also found was a plume-like feature located at ∼3 arcsec to the south-west of the centre of the galaxy, which is mostly accounted for by a strong enhancement of iron L emission. The X-ray spectrum of the plume is characterized by the metal abundance pattern of Type Ia supernovae (SNeIa), i.e. large ratios of Fe to α elements, with the iron metallicity being unusually high at     solar (90 per cent error). How the plume has been formed is not entirely clear. The inhomogeneous iron distribution suggested in this cluster provides important clues to understanding the metal enrichment process of the cluster medium.  相似文献   
2.
3.
4.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   
5.
6.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   
7.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   
8.
The spatial emission from the core of cooling-flow clusters of galaxies is inadequately described by a β -model. Spectrally, the central region of these clusters is well approximated with a two-temperature model, where the inner temperature represents the multiphase status of the core and the outer temperature is a measure of the ambient gas temperature. Following this observational evidence, I extend the use of the β -model to a two-phase gas emission, where the two components coexist within a boundary radius r cool and the ambient gas alone fills the volume shell at a radius above r cool. This simple model still provides an analytic expression for the total surface brightness profile     (Note in the first term the different sign with respect to the standard β -model.) Based upon a physically meaningful model for the X-ray emission, this formula can be used (i) to improve significantly the modelling of the surface brightness profile of cooling flow clusters of galaxies when compared to the standard β -model results, (ii) to constrain properly the physical characteristics of the intracluster plasma in the outskirts, like, e.g., the ambient gas temperature.  相似文献   
9.
We present a study of the baryonic fraction in galaxy clusters aimed at constraining the cosmological parameters Ωm, ΩLgr; and the ratio between the pressure and density of the `dark' energy, w. We use results on the gravitating mass profiles of a sample of nearby galaxy clusters observed with the BeppoSAX X-ray satellite (Ettori, De Grandi and Molendi, 2002)to set constraints on the dynamical estimate of Ωm. We then analyze Chandra observations of a sample of eight distant clusters with redshift in the range 0.72 and 1.27 and evaluate the geometrical limits on the cosmological parameters Ωm, ΩΛ and w by requiring that the gas fraction remains constant with respect to the look-back time. By combining these two independent probability distributions and using a priori distributions on both Ωb and H 0 peaked around primordial nucleosynthesis and HST-Key Project results respectively, we obtain that, at 95.4 per cent level of confidence, (i) w < —0.54, (ii)Ωm = 0.34+0.11 —0.05, ΩΛ = 1.50+0.24 —1.13 for w = — 1 (corresponding to the case for a cosmological constant), and (iii) Ωm = 1 —ΩΛ = 0.33+0.06 —0.05 for a flat Universe. This paper summarizes the work in press at Astronomy & Astrophysics by Ettori, Tozzi and Rosati (astro-ph/0211335).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号