首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
天文学   11篇
  2006年   2篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1990年   1篇
  1988年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The first World Atlas of the artificial night sky brightness   总被引:5,自引:0,他引:5  
We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about one-tenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.  相似文献   
2.
We develop an automatic, computer controlled procedure to select and to analyze the Network Bright Points (NBPs) on solar images. These have been obtained at the Sac Peak Vacuum Tower Telescope by means of the Universal Birefringent Filter and Zeiss H filters, tuned, respectively, along the profiles of the H, Mg-b1, Na-D2, and H lines.A structure is identified as an NBP if at the wavelength H- 1.5 A its maximum intensity is greater than I + 3 and its area is greater than 1.5 arc sec2 at I + 1.5, where I is the mean value and the standard deviation of the intensity distribution on the image. Each detected NBP is then searched and confirmed in all the remaining 31 images at different wavelengths.For each NBP several parameters are measured (position, area, mean and maximum contrast, Dopplergram velocity, compactness, and so on) and some identification constraints are applied.The statistical analysis of the various parameter distributions, for NBPs present within an active region and its surroundings, shows that two types of NBPs can be identified according to the value of their mean contrast C min the H- 1.5 Å image (C m 0.1 type I, C m> 0.1 type II). The type I NBPs (all occurring on the boundaries of the supergranular network) appear to be much more frequent (180/26) than the type II ones.The size A of type I NBPs is less than 1.0 arc sec for H/H wings but of the order of 1.2 arc sec for Na-D2 and Mg-bl. The mean contrast C m is around the value of 10% along the Na-D2 and Mg-bl profiles and of 20% along the H/H wings.The C m - A scatter diagrams show, for the photospheric radiation (h < 100 km), a narrow range of variability for C min correspondence with a wide range for A. For radiation orginated at higher levels (h > 200 km), the C m- A scatter diagrams seem to indicate, even if with a large variance, that the highest C m's tend to correspond to the highest A values.The mean Doppler shift is close to zero for Na-D2 and Mg-bl lines but negative (downward motion) for H and H lines.The type II NBPs tends to be preferentially located in the neighbourhood of small, compact sunspots and their detectability is almost constant through all the 4 studied line profiles. No conclusions can be derived on the mean size, contrast and Doppler shift values because their distributions are too dispersed. The only positive information is that its C m- A scatter diagram, in H and H wings, indicates a wide range of variability for C m in correspondence with very narrow range of variability for A.  相似文献   
3.
The development of three intense active centers during their appearance on the solar disk is examined using high resolution observations at 2.8 cm. Each region shows a very bright component with brightness temperature > 106 K and size smaller than 20.The development of the bright components have been investigated on different time scales. Intensity fluctuations on a time scale of minutes are within the instrumental accuracy while the evolution over periods of days shows a variation of the flux density up to 30–40% per day.The problem of the bright cores height is discussed. Heights within 10 × 103 and 40 × 103 km are found using their apparent displacement on the disk.  相似文献   
4.
The brightness distribution of the equatorial region of the Sun has been investigated at 2.8 cm with an east-west resolution of 16.1, for the following days: 30 June, 1 July, 3 July and 4 July, 1972. The results confirm the existence of very intense cores inside active regions with typical sizes of the order of 10–30 and brightness temperatures in the range of 105 K, with possible peaks up to 6 × 106 K. The relationship of these features to the H structure is also discussed.  相似文献   
5.
In this communication we briefly review the content of Cephei pulsating stars in young open clusters. The actual metallicity differences between clusters are suggested to be detectable as variations of the location of these stars in the photometric diagrams. We make a quantitative estimate of these differences and comment on the connections with the existence and possible determination of a metallicity gradient in the galactic plane.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
6.
We studied the evolution of a small eruptive flare (GOES class C1) from its onset phase using multi-wavelength observations that sample the flare atmosphere from the chromosphere to the corona. The main instruments involved were the Coronal Diagnostic Spectrometer (CDS) aboard SOHO and facilities at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak. Transition Region and Coronal Explorer (TRACE) together with Ramaty High-Energy Spectroscopic Imager (RHESSI) also provided images and spectra for this flare. Hα and TRACE images display two loop systems that outline the pre-reconnection and post-reconnection magnetic field lines and their topological changes revealing that we are dealing with an eruptive confined flare. RHESSI data do not record any detectable emission at energies ≥25 keV, and the observed count spectrum can be well fitted with a thermal plus a non-thermal model of the photon spectrum. A non-thermal electron flux F ≈ 5 × 1010 erg cm−2 s−1 is determined. The reconstructed images show a very compact source whose peak emission moves along the photospheric magnetic inversion line during the flare. This is probably related to the motion of the reconnection site, hinting at an arcade of small loops that brightens successively. The analysis of the chromospheric spectra (Ca II K, He I D3 and Hγ, acquired with a four-second temporal cadence) shows the presence of a downward velocity (between 10 and 20 km s−1) in a small region intersected by the spectrograph slit. The region is included in an area that, at the time of the maximum X-ray emission, shows upward motions at transition region (TR) and coronal levels. For the He I 58.4 and O v 62.97 lines, we determine a velocity of ≈−40 km s−1 while for the Fe XIX 59.22 line a velocity of ≈−80 km s−1 is determined with a two-component fitting. The observations are discussed in the framework of available hydrodynamic simulations and they are consistent with the scenario outlined by Fisher (1989). No explosive evaporation is expected for a non-thermal electron beam of the observed characteristics, and no gentle evaporation is allowed without upward chromospheric motion. It is suggested that the energy of non-thermal electrons can be dissipated to heat the high-density plasma, where possibly the reconnection occurs. The consequent conductive flux drives the evaporation process in a regime that we can call sub-explosive.  相似文献   
7.
We studied the evolution of two small flares (GOES class C2 and C1) that developed in the same active region with different morphological characteristics: one is extended and the other is compact. We analyzed the accuracy and the consistency of different algorithms implemented in Reuven Ramaty High-Energy Spectroscopic Imager (RHESSI) software to reconstruct the image of the emitting sources, for energies between 3 and 12 keV. We found that all tested algorithms give consistent results for the peak position, while the other parameters can differ at most by a factor 2. Pixon and Forward-fit generally converge to similar results but Pixon is more reliable for reconstructing a complex source. We investigated the spectral characteristics of the two flares during their evolution in the 3–25 keV energy band. We found that a single thermal model of the photon spectrum is inadequate to fit the observations and we needed to add either a non-thermal model or a hot thermal one. The non-thermal and the double thermal fits are comparable. If we assume a non-thermal model, the non-thermal energy is always higher than the thermal one. Only during the very final decay phase a single thermal model fits the observed spectrum fairly well.  相似文献   
8.
Cauzzi  G.  Falchi  A.  Falciani  R. 《Solar physics》2001,199(1):47-60
We analyze the temporal behavior of network bright points (NBPs) searching for low-atmosphere signatures of flares occurring on the magnetic network. We make use of a set of data acquired during coordinated observations between ground-based observatories (NSO/Sacramento Peak) and the MDI instrument on board SOHO. Light curves in chromospheric spectral lines show only small-amplitude temporal variations, without any sudden intensity enhancement that could suggest the presence of a transient phenomenon such as a (micro)flare. Only one NBP shows spikes of downward velocity, of the order of 2–4 km s–1, considered as signals of compression associated with a (micro)flare occurrence. For this same NBP, we also find a peculiar relationship between the magnetic and velocity fields fluctuations, as measured by MDI. Only for this point the BV fluctuations are well correlated, suggesting the presence of magneto-acoustic waves propagating along the magnetic structure. This correlation is lost during the compression episodes and resumes afterward. An A6 GOES soft X-ray burst is temporally associated with the downward velocity episodes, suggesting that this NBP is the footpoint of a flaring loop. This event has a total thermal energy content of about 1028 erg, and, hence, belongs to the microflare class.  相似文献   
9.
Qiu  J.  Falchi  A.  Falciani  R.  Cauzzi  G.  Smaldone  L. A. 《Solar physics》1997,172(1-2):171-179
We analyze the pre-flare and impulsive phase of an eruptive (two-ribbon) flare at several wavelengths. The total energy (mechanical plus radiative) released by the flare is 8 x 1030 erg, about a factor 6 higher than the free magnetic energy (1.3 1030 erg) estimated from the non-potentiality of the magnetic field configuration in the flare area. During the impulsive phase, we find a very good time coincidence between the hard X-ray light curve and the light curves for 2 small areas ( 4 in size) in the red wing of the H line and in the He-D3 line center. This temporal coincidence is compatible with the interpretation that hard X-ray emission is produced by bremsstrahlung of accelerated electron beams striking these dense areas. For the other regions of the H ribbons we find more gradual light curves, suggesting a different energy transport mechanism such as conduction.  相似文献   
10.
The asymmetric profiles of 11 metallic lines are studied, at = 0.3, as functions of . Their variations cannot be interpreted as due to temperature effects, but might imply a dependence on of the photospheric velocity field.This work has been supported by the CNR through the Gruppo Nazionale di Astronomia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号