首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
大气科学   2篇
地球物理   12篇
地质学   20篇
海洋学   2篇
天文学   1篇
自然地理   11篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1996年   2篇
  1994年   1篇
  1992年   4篇
  1976年   1篇
  1975年   1篇
排序方式: 共有48条查询结果,搜索用时 390 毫秒
1.
An acoustic method, called seismic endoscopy, able to perform 3D imaging around shallow-depth boreholes is presented. A probe, composed of an isotropic source and a directional receiver working in the 20–100 kHz frequency range, provides images of cylindrical volumes having radii of a few metres, with an accuracy of centimetres and 25° azimuthal directivity. In order to obtain clear images of the medium discontinuities, multi-offset and multi-azimuth data acquisition allows specific algorithms to be used to determine vertical directivity correction, azimuthal focusing and reflected wave enhancement by cancellation of the tube waves. The method is tested with data acquired in an acoustic tank and with synthetic data. Initial experimental results at a test site demonstrate the performance of the seismic endoscopy probe.  相似文献   
2.
The interactions between climatic and volcanic forcing on diatom communities contained in a 50,000-year sedimentary sequence from Lake Massoko, Tanzania, were examined. At the century scale, 19 discrete tephra inputs to the lake isolated the sedimentary nutrient supply and shifted the diatom communities to those tolerant of low phosphorus levels, whereas at the millennial scale, diatom-inferred shifts in precipitation–evaporation based on conductivity optima and diatom life-form ratios were broadly similar to lake-level reconstructions from Lake Rukwa, Lake Malawi, and others in the region. Some fluctuations of Lake Massoko are consistent with the precession-driven changes in insolation, but the major climate shifts do not relate directly to orbital forcing of summer insolation south of the equator and show more consistency with records from the equatorial and northern tropics that receive rainfall from the passing of the intertropical convergence zone. Sea surface temperatures are strongly correlated to multimillennial-scale climate patterns over this region of Africa.  相似文献   
3.
We propose a two-step inversion of three-component seismograms that (1) recovers the far-field source time function at each station and (2) estimates the distribution of co-seismic slip on the fault plane for small earthquakes (magnitude 3 to 4). The empirical Green's function (EGF) method consists of finding a small earthquake located near the one we wish to study and then performing a deconvolution to remove the path, site, and instrumental effects from the main-event signal.
The deconvolution between the two earthquakes is an unstable procedure: we have therefore developed a simulated annealing technique to recover a stable and positive source time function (STF) in the time domain at each station with an estimation of uncertainties. Given a good azimuthal coverage, we can obtain information on the directivity effect as well as on the rupture process. We propose an inversion method by simulated annealing using the STF to recover the distribution of slip on the fault plane with a constant rupture-velocity model. This method permits estimation of physical quantities on the fault plane, as well as possible identification of the real fault plane.
We apply this two-step procedure for an event of magnitude 3 recorded in the Gulf of Corinth in August 1991. A nearby event of magnitude 2 provides us with empirical Green's functions for each station. We estimate an active fault area of 0.02 to 0.15 km2 and deduce a stress-drop value of 1 to 30 bar and an average slip of 0.1 to 1.6 cm. The selected fault of the main event is in good agreement with the existence of a detachment surface inferred from the tectonics of this half-graben.  相似文献   
4.
5.
In adapting the prestack migration technique used in seismic imaging to the inversion of ground‐penetrating radar (GPR) from time‐ to depth‐sections, we show that the theoretical integral formulation of the inversion can be applied to electromagnetic problems, albeit with three assumptions. The first two assumptions concern the electromagnetic characteristics of the medium, primarily that the medium must be perfectly resistive and non‐dispersive, and the third concerns the antennae radiation pattern, which is taken to be 2D. The application of this adaptation of the inversion method is confirmed by migrating actual GPR measurements acquired on the test site of the Laboratoire Central des Ponts et Chaussées. The results show good agreement with the geometry of the structures in the medium and confirm that the possible departure from the assumption of a purely resistive medium has no visible effect on the information concerning the geometry of scattering and reflecting structures. The field experiments also show that prestack migration processing is sufficiently robust with regard to the assumption of a non‐dispersive medium. The assumption of a 2D antennae radiation pattern, however, produces artefacts that could be significant for laterally heterogeneous media. Nevertheless, where the medium is not highly laterally heterogeneous, the migration gives a clear image of the scattering potential due to the geometry of structural contrasts in the medium; the scatterers are well focused from diffraction hyperbolae and well localized. Spatial geometry has limited dimensional accuracy and positions are located with a maximum error equal to the minimum wavelength of the signal bandpass. Objects smaller than one wavelength can nevertheless be detected and well focused if their dielectric contrasts are sufficiently high, as in the case of iron or water in gneiss gravels. Furthermore, the suitability of multi‐offset protocols to estimate the electromagnetic propagating velocity and to decrease the non‐coherent noise level of measurements is confirmed. Our velocity estimation is based on the semblance calculation of multi‐offset migrated images, and we confirmed the relevance of this quantification method using numerical data. The signal‐to‐noise ratio is improved by summing multi‐offset results after the addition of random noise on measurements. Thus the adaptation of prestack migration to multi‐offset radar measurements significantly improves the resolution of the scattering potential of the medium. Limitations associated with the methods used here suggest that 3D algorithms should be applied to strongly laterally heterogeneous media and further studies concerning the waveform inversion are necessary to obtain information about the electric nature of the medium.  相似文献   
6.
The use of invertebrates as biomonitors of ground water quality is a relatively new approach that has come of age with the development of ground water ecology. The benefits of such an approach are illustrated by four examples of field biomonitoring from several sites in various hydrogeological settings. Contamination of the interstitial zone by heavy metals in some sectors of the Rhóne River (France) was shown by the scarcity of insect species; sewage pollution in the saturated zone of a karstic aquifer was indicated by the low relative abundances of stygobites as compared with those of stygophiles and stygoxenes; and enrichment with organic matter of an underflow was clearly demonstrated by the extremely high density of ground water invertebrates such as oligochaetes, ostracods, and isopods. Examination of the spatial changes in the composition and abundance of invertebrate assemblages was also useful in determining the direction and intensity of water fluxes between a river and its underflow, as well as in delineating the reduced or oxidized zones in a manganese-polluted aquifer. Finally, the selected case studies emphasized the variety of methodological approaches that could be developed in ground water contamination biomonitoring, as well as the complementary and sometimes new information provided by this innovative method in comparison with that obtained by conventional pollution monitoring techniques.  相似文献   
7.
The results of an extensive study of streamwater chemistry during stormflow events, for a montane Mediterranean area, are presented. Four groups of variables are identified as having contrasting behaviour: alkalinity and pH; nitrate and potassium; sulphate and chloride; sodium, calcium and magnesium. The results show a complex pattern of response to flow that can be broadly linked to: (1) antecedent hydrological conditions; (2) rainfall intensity; (3) supplies of water from chemically distinct areas within the catchment. However, comparisons between this study and a parallel one which examined the composition of waters within the catchment, show that it is presently impossible to quantify the relative supplies from each part of the catchment. The findings are reviewed in relation to analogous studies within a European setting and in relation to modelling initiatives.  相似文献   
8.
We question the correlation between vertical velocity (w) on the one hand and the occurrence of convective plumes in lidar reflectivity (i.e. range corrected backscatter signal Pz 2) and depolarization ratio (Δ) on the other hand in the convective boundary layer (CBL). Thermal vertical motion is directly investigated using vertical velocities measured by a ground-based Doppler lidar operating at 2 μm. This lidar provides also simultaneous measurements of lidar reflectivity. In addition, a second lidar 200 m away provides reflectivities at 0.53 and 1 μm and depolarization ratio at 0.53 μm. The time series from the two lidars are analyzed in terms of linear correlation coefficient (ρ). The main result is that the plume-like structures provided by lidar reflectivity within the CBL as well as the CBL height are not a clear signature of updrafts. It is shown that the lidar reflectivity within the CBL is frequently anti-correlated (ρ (w, Pz 2 )) with the vertical velocity. On the contrary, the correlation coefficient between the depolarization ratio and the vertical velocity ρ (w, Δ ) is always positive, showing that the depolarization ratio is a fair tracer of updrafts. The importance of relative humidity on the correlation coefficient is discussed. An erratum to this article can be found at  相似文献   
9.
10.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号