首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
测绘学   2篇
地球物理   8篇
地质学   2篇
天文学   13篇
  2012年   1篇
  2011年   2篇
  2006年   2篇
  2005年   1篇
  2001年   2篇
  2000年   3篇
  1997年   2篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
A three-dimensional, time-dependent model of thermospheric dynamics has been used to interpret recent experimental measurements of high altitude winds by rocket-borne and ground-based techniques. The model is global and includes a self-consistent treatment of the non-linear, Coriolis and viscosity terms. The solar u.v. and e.u.v. energy input provides the major energy source for the thermosphere. Solar u.v. and e.u.v. heating appear to be inadequate to explain observed thermospheric temperatures if e.u.v. heating efficiency (ε) lies in the range 0.3 < ε < 0.35. If the recent solar e.u.v. data are correct, then a value of ε between 0.4 and 0.45 would bring fluxes and observed temperatures into agreement. The Heppner (1977) and Volland (1978) models of high-latitude electric field are used to provide sources of both momentum (via ion drag) and energy (via Joule heating). We find that the Heppner Model CO (equivalent to Volland Model 1) is most appropriate for very quiet geomagnetic conditions (Kp ? 2) while Model A (equivalent to Volland Model 2) provides the necessary enhancement at high latitudes for conditions of moderate activity (Kp ~ 4). Even with the addition of a polar electric field, there still appears to be a shortage of high-latitude energy input in that model winds tend to be 10 m s?1 poleward of observed winds under quiet or average geomagnetic conditions. This extra energy cannot be provided by enhancing the polar electric fields since the extra momentum would cause disagreement with the observed high latitude winds. High latitude particulate sources of relatively low energies, ~100 eV, seem the most likely candidates depositing their energy above about 200km. Relatively modest amounts of energy are then required, < 1010W global, to bring the model into agreement with both high- and mid-latitude neutral wind results.  相似文献   
2.
Raeder  J.  Wang  Y.L.  Fuller-Rowell  T.J.  Singer  H.J. 《Solar physics》2001,204(1-2):323-337
We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014228230714  相似文献   
3.
4.
A fully time-dependent ionospheric convection model, in which electric potentials are derived by an analytic solution of Laplaces equation, is described. This model has been developed to replace the empirically derived average convection patterns currently used routinely in the Sheffield/SEL/UCL coupled thermosphere/ionosphere/plasmasphere model (CTIP) for modelling disturbed periods. Illustrative studies of such periods indicate that, for the electric field pulsation periods imposed, long-term averages of parameters such as Joule heating and plasma density have significantly different values in a time-dependent model compared to those derived under the same mean conditions in a steady-state model. These differences are indicative of the highly non-linear nature of the processes involved.  相似文献   
5.
Using a three-dimensional, time-dependent, global model, we have simulated the response of the thermosphere to an isolated substorm. The substorm is characterized by a time variance of the high latitude convective electric field with an associated enhancement of auroral E region electron density, from an initially quiet thermosphere. We have simulated such an impulsive energy input with both separated and co-incident geographic and geomagnetic poles and have found that, in both cases, in the lower thermosphere ( ~ 120 km), a long-lived vortex phenomenon is generated. Initially, two contra-rotating vortices are generated by the effects of ion drag during the period of enhanced high latitude energy input centred on the polar cap/auroral oval boundary, one at dusk (18.00 L.T.) and the other at dawn (06.00 L.T.). After the end of the substorm, the cyclonic vortex (dawn) dissipates rapidly while the dusk anti-cyclonic vortex appears virtually self-sustaining and survives many hours after the substorm input has ceased. A theory is derived to explain and interpret the results and it appears that the effect is analogous to a meteorological weather system. In this case, however, the dusk anti-cyclonic vortex has, instead of pressure, the centrifugal acceleration balancing the Coriolis force. The equivalent anti-clockwise dawn vortex, unlike a low pressure system, has no balancing force, since Coriolis and the centrifugal term assist and this vortex rapidly disappears.  相似文献   
6.
Annual, seasonal and semiannual variations of F2-layer electron density (NmF2) and height (hmF2) have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP), for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.  相似文献   
7.
One of the most consistent and often dramatic interactions between the high latitude ionosphere and the thermosphere occurs in the vicinity of the auroral oval in the afternoon and evening period. Ionospheric ions, convected sunward by the influence of the magnetospheric electric field, create a sunward jet-stream in the thermosphere, where wind speeds of up to 1 km s?1 can occur. This jet-stream is nearly always present in the middle and upper thermosphere (above 200 km altitude), even during periods of very low geomagnetic activity. However, the magnitude of the winds in the jet-stream, as well as its location and range in latitude, each depend on geomagnetic activity. On two occasions, jet-streams of extreme magnitude have been studied using simultaneous ground-based and satellite observations, probing both the latitudinal structure and the local time dependence. The observations have then been evaluated with the aid of simulations using a global, three-dimensional, time-dependent model of thermospheric dynamics including the effects of magnetospheric convection and particle precipitation. The extreme events, where sunward winds of above 800 ms?1 are generated at relatively low geomagnetic latitudes (60–70°) require a greatly expanded auroral oval and large cross-polar cap electric field ( ~ 150 kV). These in turn are generated by a persistent strong Interplanetary Magnetic Field, with a large southward component. Global indices such as Kp are a relatively poor indicator of the magnitude and extent of the jet-stream winds.  相似文献   
8.
9.
The dynamics of the high latitude thermosphere are dominated by the ion circulation pattern driven by magnetospheric convection. The reaction of the neutral thermosphere is influenced by both the magnitude of the ion convection velocity and by the conductivity of the thermosphere. Using a threedimensional, time-dependent, thermospheric, neutral model together with different ionospheric models, the effect of changes in conductivity can be assessed. The ion density is described by two models: the first is the empirical model of Chiu (1975) appropriate for very quiet geomagnetic conditions, and the second is a modified version of the theoretical model of Quegan et al. (1982). The differences in the neutral circulation resulting from the use of these two ionospheric models emphasizes the need for realistic high latitude conductivities when attempting to model average or disturbed geomagnetic conditions, and a requirement that models should couple realistically the ionosphere and the neutral thermosphere. An attempt is made to qualitatively interpret some of the features of the neutral circulation produced at high latitudes by magnetospheric processes.  相似文献   
10.
In the past the global, fully coupled, time-dependent mathematical model of the Earths thermo-sphere/ionosphere/plasmasphere (CTIP) has been unable to reproduce accurately observed values of the maximum plasma frequency, foF2, at extreme geophysical locations such as the Argentine Islands during the summer solstice where the ionosphere remains in sunlight throughout the day. This is probably because the seasonal dependence of thermospheric cooling by 5.3 m nitric oxide has been neglected and the photodissociation of O2 and heating rate calculations have been over-simplified. Now we have included an up-to-date calculation of the solar EUV and UV thermospheric heating rate, coupled with a new calculation of a diurnally varying O2 photodissociation rate, in the model. Seasonally dependent 5.3 m nitric oxide cooling is also included. With these important improvements, it is found that model values of foF2 are in substantially better agreement with observation. The height of the F2-peak is reduced throughout the day, but remains within acceptable limits of values derived from observation, except at around 0600 h LT. We also carry out two studies of the sensitivity of the upper atmosphere to changes in the magnitude of nitric oxide cooling and photodissociation rates. We find that hmF2 increases with increased heating, whilst foF2 falls. The converse is true for an increase in the cooling rate. Similarly increasing the photodissociation rate increases both hmF2 and foF2. These changes are explained in terms of changes in the neutral temperature, composition and neutral wind.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号