首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   8篇
测绘学   4篇
大气科学   13篇
地球物理   28篇
地质学   43篇
海洋学   4篇
天文学   17篇
自然地理   15篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1973年   2篇
排序方式: 共有124条查询结果,搜索用时 507 毫秒
1.
Geochemical processes occurring in cold environments on Earth, Mars, and Europa have elicited considerable interest in the application of geochemical models to subzero temperatures. Few existing geochemical models explicitly include acid chemistry and those that do are largely restricted to temperatures ≥0°C or rely on the mole-fraction scale rather than the more common molal scale. This paper describes (1) use of the Clegg mole-fraction acid models to develop a molal-based model for hydrochloric, nitric, and sulfuric acids at low temperatures; (2) incorporation of acid chemistry and nitrate minerals into the FREZCHEM model; (3) validation and limitations of the derived acid model; and (4) simulation of hypothetical acidic brines for Europa.The Clegg mole-fraction acid models were used to estimate activities of water and mean ionic activity coefficients that serve as the database for estimating molal Pitzer-equation parameters for HCl (188 to 298 K), HNO3 (228 to 298 K), and H2SO4 (208 to 298 K). Model eutectics for HNO3 and H2SO4 agree with experimental measurements to within ± 0.2°C. In agreement with previous work, the experimental freezing point depression (fpd) data for pure HCl at subzero temperatures were judged to be flawed and unreliable. Three alternatives are discussed for handling HCl chemistry at subzero temperatures. In addition to defining the solubility of solid-phase acids, this work also adds three new nitrate minerals and six new acid salts to the FREZCHEM model and refines equilibria among water ice, liquid water, and water vapor over the temperature range from 180 to 298 K. The final system is parameterized for Na-K-Mg-Ca-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-H2O.Simulations of hypothetical MgSO4-H2SO4-H2O and Na2SO4-MgSO4-H2SO4-H2O brines for Europa demonstrate how freezing can convert a predominantly salt solution into a predominantly acid solution at subzero temperatures. This result has consequences for the effects of salinity, acidity, and temperature as limiting factors for potential life on Europa. Strong acidity would limit life-forms to highly acidophilic organisms.  相似文献   
2.
Eighty-two core samples were collected from the Spring Valley #1 well which penetrates the Upper Carboniferous strata in the Late Devonian–Early Permian Maritimes Basin. The strata consist of alternating sandstones and mudstones deposited in a continental environment. The objective of this study is to characterize the relationship of sandstone porosity with depth, and to investigate the diagenetic processes related to the porosity evolution. Porosity values estimated from point counting range from 0% to 27.8%, but are mostly between 5% and 20%. Except samples that are significantly cemented by calcite, porosity values clearly decrease with depth. Two phases of calcite cement were distinguished based on Cathodoluminescence, with the early phase being largely dissolved and preserved as minor relicts in the later phase. Feldspar dissolution was extensive and contributed significantly to the development of secondary porosity. Quartz cementation was widespread and increased with depth. Fluid inclusions recorded in calcite and quartz cements indicate that interstitial fluids in the upper part of the stratigraphic column were dominated by waters with salinity lower than that of seawater, the middle part was first dominated by low-salinity waters, then invaded by brines, and the lower part was dominated by brines. Homogenization temperatures of fluid inclusions generally increase with depth and suggest a paleogeothermal gradient of 25 °C/km, which is broadly consistent with that indicated by vitrinite reflectance data. An erosion of 1.1–2.4 (mean 1.75) km of strata is inferred to have taken place above the stratigraphic column. δ18O values of calcite cements (mainly from the late phase) decrease with depth, implying increasing temperatures of formation, as also suggested by fluid-inclusion data. δ13C values of calcite cements range from −13.4‰ to −5.7‰, suggesting that organic matter was an important carbon source for calcite cements. A comparison of the porosity data with a theoretical compaction curve indicates that the upper and middle parts of the stratigraphic column show higher-than-normal porosity values, which are related to significant calcite and feldspar dissolution. Meteoric incursion and carboxylic acids generated from organic maturation were probably responsible for the abundant dissolution events.  相似文献   
3.
4.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   
5.
Pressure plays a critical role in controlling aqueous geochemical processes in deep oceans and deep ice. The putative ocean of Europa could have pressures of 1200 bars or higher on the seafloor, a pressure not dissimilar to the deepest ocean basin on Earth (the Mariana Trench at 1100 bars of pressure). At such high pressures, chemical thermodynamic relations need to explicitly consider pressure. A number of papers have addressed the role of pressure on equilibrium constants, activity coefficients, and the activity of water. None of these models deal, however, with processes at subzero temperatures, which may be important in cold environments on Earth and other planetary bodies. The objectives of this work were to (1) incorporate a pressure dependence into an existing geochemical model parameterized for subzero temperatures (FREZCHEM), (2) validate the model, and (3) simulate pressure-dependent processes on Europa. As part of objective 1, we examined two models for quantifying the volumetric properties of liquid water at subzero temperatures: one model is based on the measured properties of supercooled water, and the other model is based on the properties of liquid water in equilibrium with ice.The relative effect of pressure on solution properties falls in the order: equilibrium constants(K) > activity coefficients (γ) > activity of water (aw). The errors (%) in our model associated with these properties, however, fall in the order: γ > K > aw. The transposition between K and γ is due to a more accurate model for estimating K than for estimating γ. Only activity coefficients are likely to be significantly in error. However, even in this case, the errors are likely to be only in the range of 2 to 5% up to 1000 bars of pressure. Evidence based on the pressure/temperature melting of ice and salt solution densities argue in favor of the equilibrium water model, which depends on extrapolations, for characterizing the properties of liquid water in electrolyte solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements.To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4·12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic.  相似文献   
6.
The evolution of the Australian plate can be interpreted in a plate‐tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent‐continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly supra‐subduction environment. Widespread plume‐driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea).  相似文献   
7.
 Neural networks are attractive tools for the derivation of thematic maps from remotely sensed data. Most attention has focused on the multilayer perceptron (MLP) network but other network types are available and have different properties that may sometimes be more appropriate for some applications. Here a MLP, radial basis function (RBF) and probabilistic neural network (PNN) were used to classify remotely sensed data of an agricultural site. The accuracy of these classifications ranged from 86.25–91.25%. The accuracy of the PNN classification could be increased through the incorporation of prior probabilities of class membership but the accuracy of each classification could also be degraded by the presence of an untrained class. Post-classification analyses, however, could be used to identify potentially misclassified cases, including those belonging to an untrained class, to increase accuracy. The effect of the post-classification analysis on the accuracy of the classification derived from each of the three network types investigated differed and it is suggested that network type be selected carefully to meet the requirements of the application in-hand. Received: 23 March 2000 / Accepted: 9 July 2000  相似文献   
8.
9.
Allochthonous salt structures and associated primary and secondary minibasins are exposed in Neoproterozoic strata of the eastern Willouran Ranges, South Australia. Detailed geologic mapping using high‐quality airborne hyperspectral remote‐sensing data and satellite imagery, combined with a qualitative structural restoration, are used to elucidate the evolution of this complex, long‐lived (>250 Myr) salt system. Field observations and interpretations at a resolution unobtainable from seismic or well data provide a means to test published models of allochthonous salt emplacement and associated salt‐sediment interaction derived from subsurface data in the northern Gulf of Mexico. Salt diapirs and sheets are represented by megabreccias of nonevaporite lithologies that were originally interbedded with evaporites that have been dissolved and/or altered. Passive diapirism began shortly after deposition of the Callanna Group layered evaporite sequence. A primary basin containing an expulsion‐rollover structure and megaflap is flanked by two vertical diapirs. Salt flowed laterally from the diapirs to form a complex, multi‐level canopy, now partly welded, containing an encapsulated minibasin and capped by suprasalt basins. Salt and minibasin geometries were modified during the Late Cambrian–Ordovician Delamerian Orogeny (ca. 500 Ma). Small‐scale structures such as subsalt shear zones, fractured or mixed ‘rubble zones’ and thrust imbricates are absent beneath allochthonous salt and welds in the eastern Willouran Ranges. Instead, either undeformed strata or halokinetic drape folds that include preserved diapir roof strata are found directly below the transition from steep diapirs to salt sheets. Allochthonous salt first broke through the diapir roofs and then flowed laterally, resulting in variable preservation of the subsalt drape folds. Lateral salt emplacement was presumably on roof‐edge thrusts or, because of the shallow depositional environment, via open‐toed advance or extrusive advance, but without associated subsalt deformation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号