首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  国内免费   13篇
测绘学   6篇
大气科学   2篇
地球物理   5篇
地质学   34篇
海洋学   4篇
天文学   20篇
综合类   1篇
自然地理   5篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   7篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
排序方式: 共有77条查询结果,搜索用时 250 毫秒
1.
2.
Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island fringing salt marsh.15N-enriched nitrate was injected into the subterranean estuary (in situ push-pull method) to evaluate the denitrification capacity of the saturated zone at multiple depths (125–300 cm) below different zones (upland-marsh transition zone, high marsh, and low marsh). From the upland to low marsh, the water table became shallower, groundwater dissolved oxygen decreased, and groundwater pH, soil organic carbon, and total root biomass increased. As groundwater approached the high and low marsh, the hydraulic gradient increased and deep groundwater upwelled. In the warm season (groundwater temperature >12 °C), elevated groundwater denitrification capacity within each zone was observed. The warm season low marsh groundwater denitrification capacity was significantly higher than all other zones and depths. In the cool season (groundwater temperature <10.5 °C), elevated groundwater denitrification capacity was only found in the low marsh. Additions of dissolved organic carbon did not alter groundwater denitrification capacity suggesting that an alternative electron donor, possibly transported by tidal inundation from the root zone, may be limiting. Combining flow paths with denitrification capacity and saturated porewater residence time, we estimated that as much as 29–60 mg N could be removed from 11 of water flowing through the subterranean estuary below the low marsh, arguing for the significance of subterranean estuaries in annual watershed scale N budgets.  相似文献   
3.
Abstract

We attempt to describe the role of tessellated models of space within the discipline of Geographic Information Systems (GIS) – a speciality coming largely out of Geography and Land Surveying, where there was a strong need to represent information about the land’s surface within a computer system rather than on the original paper maps. We look at some of the basic operations in GIS, including dynamic and kinetic applications. We examine issues of topology and data structures, and produced a tessellation model that may be widely applied both to traditional “object” and “field” data types. The Part I of this study examined object and field spatial models, the Voronoi extension of objects, and the graphs that express the resulting adjacencies. The required data structures were also briefly described, along with 2D and 3D structures and hierarchical indexing. The importance of graph duality was emphasized. Here, this second paper builds on the structures described in the first, and examines how these may be modified: change may often be associated with either viewpoint or time. Incremental algorithms permit additional point insertion, and applications involving the addition of skeleton points, for map scanning, contour enrichment or watershed delineation and simulation. Dynamic algorithms permit skeleton smoothing, and higher order Voronoi diagram applications, including Sibson interpolation. Kinetic algorithms allow collision detection applications, free-Lagrange flow modeling, and pen movement simulation for map drawing. If desired these methods may be extended to 3D. Based on this framework, it can be argued that tessellation models are fundamental to our understanding and processing of geographical space, and provide a coherent framework for understanding the “space” in which we exist.  相似文献   
4.
Fluid ascent through the solid lithosphere and its relation to earthquakes   总被引:1,自引:0,他引:1  
The Earth is continuously expelling gases and liquids from great depths—juvenile volatiles from the mantle and recycled metamorphic products. Some of these fluids ascend through liquid rock in volcanic processes, but others utilize fractures and faults as conduits through the solid lithosphere. The latter process may have a major influence on earthquakes, since fluids at near lithostatic pressures appear to be required to activate deep faults that would otherwise remain locked.Fluids can be driven upward through solid rock by buoyancy, but only if present in sufficient concentration to form large-scale domains occupying interconnected fracture porosity. A growing fluid domain becomes so mobilized only when it attains the critical vertical dimension required for hydrostatic instability. This dimension, depending on the ultimate compressive yield strength of the rock, may be as much as several kilometers.Any column of fluid ascending through fractures in the solid lithosphere from a prolific deep source must become organized into a vertical sequence of discrete domains, separated by fluid-pressure discontinuities. This is required because a continuous hydrostatic-fluid-pressure profile extending from an arbitrarily deep source to the surface cannot be permitted by the finite strength of rock. A vertically stacked sequence of domains allows the internal fluid-pressure profile to approximate the external rock-stress profile in a stepwise fashion. The pressure discontinuity below the base of the uppermost hydrostatic domain may be responsible for some occurrences of so-called anomalous geopressures. An ascending stream of fluid that percolates upward from a deep source through a column of domains must encounter a sequence of abrupt pressure decreases at the transitions between successive domains. If supercritical gases act as solvents, the dissolved substances may drop out of solution at such pressure discontinuities, resulting in a local concentration of minerals and other substances.At great depths, brittle fracture would normally be prevented by high pressure and temperature, with all excessive stress discharged by ductile flow. Rock strata invaded by an ascending fluid domain are weakened, however, because cracks generated or reactivated by the high-pressure fluid can support the overburden, greatly reducing internal friction. This reduction of strength may cause a previously stressed rock to fail, resulting in hydraulic shear fracture. Thus, earthquakes may be triggered by the buoyant migration of deep-source fluids.The actual timing of the failure that leads to such an earthquake may be determined by the relatively rapid inflation of a fluid domain and not by any significant increase in the probably much slower rate of regional tectonic strain. Many earthquake precursory phenomena may be secondary symptoms of an increase in pore-fluid pressure, and certain coseismic phenomena may result from the venting of high-pressure fluids when faults break the surface. Instabilities in the migration of such fluid domains may also contribute to or cause the eruption of mud volcanoes, magma volcanoes, and kimberlite pipes.  相似文献   
5.
6.
7.
In this study, we investigated the relationship between watershed characteristics and hydrology using high spatial resolution impervious surface area (ISA), hydrologic simulations and spatial regression. We selected 20 watersheds at HUC 12 level with different degrees of urbanization and performed hydrologic simulation using a distributed object-oriented rainfall and runoff simulation model. We extracted the discharge per area and ratio of runoff to base flow from simulation results and used them as indicators of hydrology pattern. We derived percentage of ISA, distance from ISA to streams, and stream density as the watershed characteristics to evaluate the relationship with hydrology pattern in watersheds using ordinary least square, spatial error and spatial lag regression models. The comparison indicates that spatial lag regression model can achieve better performance for the evaluation of relationship between ratio of runoff to base flow and watershed characteristics, and that three models provide similar performance for the evaluation of relationship between discharge per area and watershed characteristics. The results from regression analyses demonstrate that ISA plays an important role in watershed hydrology. Ignorance of spatial dependence in analyses will likely cause inaccurate evaluation for relationship between ISA and watershed hydrology. The hydrologic model, regression methods and relationships between watershed characteristics and hydrology pattern provide important tools and information for decision makers to evaluate the effect of different scenarios in land management.  相似文献   
8.
Collisions of comets with planetary bodies are capable of impressing patterns of magnetization onto them that match those observed for the Moon and possibly for Mercury. The ambient solar wind magnetic field is briefly but strongly enhanced as the large partially ionized cometary atmosphere is compressed against the planetary surface. Just at the time of peak field enhancement, the solid part of the comet collides with the surface and the compressed fields are permanently imprinted by shock magnetization.  相似文献   
9.
本文阐述了湖南氧化金矿资源的分布、矿床类型及其地质特征,总结了近年来我省氧化金矿资源勘查和利用方面所取得的成就,找出了其中存在的主要问题,探讨了加速勘查和开发氧化金矿资源的对策与措施。  相似文献   
10.
Ecosystem-based management is more successful when a great diversity of stakeholders is engaged early in a decision-making process. Implementation of the California Marine Life Protection Act (MLPA) has been stakeholder-based, coordinating the participation of a wide range of people including divers, fishermen, conservationists, local officials, business owners and coastal residents. Although commercial and recreational fishermen have actively participated throughout the MLPA implementation process, and research related to California’s sport and commercial fisheries has been integrated into the process, pier and shore anglers have been relatively unengaged as stakeholders. This study was completed to generate information about pier angler understanding and sentiment towards marine protected areas (MPAs), as well as to educate anglers on the MLPA implementation process in southern California and inform them on involvement opportunities. Of the 3030 pier anglers surveyed over 12 months, 78% only fish for subsistence from piers and from shore (never from boats); 84.6% are of non-White/Euro-American ethnicity and speak English as a second language; and 82% indicated that they were supportive of establishing a strong network of MPAs in southern California, specifically fully-protective no-take marine reserves. This study is an example of an alternative and customized method of outreach designed to reach a unique and previously unengaged stakeholder group, which stands to be affected by the implementation of the MLPA in California. Engaging such non-traditional stakeholders in public policy may be critical for decision makers to gauge all views from those standing to be affected by a policy—not just the views of those that regularly attend policy meetings—and for the ultimate success of policy implementation and community support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号