首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
大气科学   3篇
地球物理   4篇
地质学   52篇
海洋学   3篇
天文学   5篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有68条查询结果,搜索用时 46 毫秒
1.
2.
3.
The possibility of using hydrothermal fluorite as an Sm–Nd geochronometer is based on the results of an REE pattern study of this mineral (Chernyshev et al., 1986). As a result of REE fractionation, in many cases, the Sm/Nd ratio achieves a multifold increase compared with its level in terrestrial rocks, and the radiogenic shift of the 143Nd/144Nd isotope ratio reaches 10–20 εNd units over a short time interval (as soon as tens of Ma). This is a necessary prerequisite for Sm–Nd isochron dating of fluorite. Zonal polychrome fluorite from a vein referred to the final stage of large-scale uranium mineralization at the Sterl’tsovka deposit in the ore field of the same name located in the eastern Transbaikal region has been dated using the 143Nd/144Nd method. To optimize isochron construction, local probes with high and contrasting Sm/Nd ratios have been sampled from the polished surfaces of two samples, taking into account the REE pattern of zonal fluorite. Sm–Nd isochron dating has been carried out separately for each sample. The 147Sm/144Nd и 143Nd/144Nd ratios vary within the intervals 0.5359–2.037 and 0.512799–0.514105, respectively. Two isochrons, each based on six fluorite probes, have been obtained with the following parameters, which coincide within 2σ uncertainty limits: (1) t = 134.8 ± 1.3 Ma, (143Nd/144Nd)0 = 0.512310 ± 13, MWSD = 0.43 and (2) t = 135.8 ± 1.6 Ma, (143Nd/144Nd)0 = 0.512318 ± 10, MWSD = 1.5. The mean age of fluorite based on two isochron datings is 135.3 ± 1 Ma. Comparison of this value with the most precise dating of pitchblende related to the ore stage in the Strel’tsovka ore field (135.5 ± 1 Ma) shows that four mineralization stages, distinguished by geological and mineralogical data, that were completed with the formation of polychrome fluorite veins 135.3 ± 1 Ma ago, represent a single and indivisible hydrothermal process whose duration does not exceed 1 Ma.  相似文献   
4.
The Kouris catchment is located in the south of the Troodos massif in Cyprus. The hydrology is driven by a Mediterranean climate, a mountainous topography, and a complex distribution of hydrogeological properties resulting from complex geology. To quantify the regional water balance further, a simple method using continuous streamflow records in the River Limnatis (Kouris catchment) was applied to calculate the actual evapotranspiration rate in the dry seasons. It was found that daily cycles of streamflow, recorded by automatic pressure logger, were caused by direct evaporation from the groundwater table and by transpiration of riparian forest. The daily amounts of ‘missing’ streamflow were calculated for the period 30 October–4 November 2001 and were extrapolated to the entire dry season and to the whole Kouris catchment. The actual evapotranspiration rate from the alluvial aquifer of the region is 2·4 ± 0·5 Mm3 for April–September 2001. The validity of the assumptions and the uncertainties in the estimates used in the method are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Recent years have been marked by progress in studying the structure of natural X-ray amorphous substances, anthraxolites included, by scanning electron and atomic power microscopy. Integration of the available data on molecular and supramolecular structure of higher anthraxolites from Karelia, Novaya Zemlya, and the Urals allowed elaboration of new classification criteria for solid bitumen, namely, degree of structure perfection and micromineral composition. This approach will help to eliminate disadvantages of traditional investigation of solid bitumen.  相似文献   
7.
An isotopic geochronological study of Russia’s largest Strel’tsovka uranium district has been carried out. Polychronous granite generation, which determined the structure of the pre-Mesozoic basement, had important implications for the formation of volcanotectonic structural elements bearing economic uranium mineralization. The study of U-Pb, Rb-Sr, and Sm-Nd isotopic systems of whole-rock samples and minerals of granitic rocks allowed us to estimate the deportment of these systems in spatially conjugated granite-forming and hydrothermal processes differing in age and gave grounds for revising the age of granites pertaining to the Urulyungui Complex and refining the age of the Unda Complex.  相似文献   
8.
Owing to the rapid increase in available data on the natural variations of the 238U/235U ratio, new isotopic geochemical mark of redox processes are beginning to emerge. In this connection, numerical estimates of the 238U and 235U fractionation factor (α(UIV?UVI)) accompanying the reduction UVI → UIV are needed. Such an estimate has been obtained for hydrothermal pitchblende formation based on results of high-precision (±0.06‰) measurements of the 238U/235U ratio in local microsamples of coarse spherulitic pitchblende from carbonate-pitchblende veins at the Oktyabr’sky deposit (Strel’tsovsky uranium ore field, eastern Transbaikal region). For this purpose, we used the formation temperature of hydrothermal pitchblende and a maximum estimate of the fractionation factor for 238U and 235U isotopes in the solution-solid phase system under normal (25°C) conditions (Murphy et al., 2014). The most probable isotopic fractionation factor accompanying pitchblende crystallization from hydrothermal solution at T = 320?250°C falls into the interval α(UIV?UVI) = 1.00020?1.00023.  相似文献   
9.
U-Pb systems were examined in samples (ranging from 4 to 10 cm3 in volume) of ore material taken from along a 3.5-m profile across a zone of U mineralization exposed in an underground mine at the Strel’tsovskoe U deposit in eastern Transbaikalia. The behaviors of two isotopic U-Pb systems (238U-206Pb and 235U-207Pb) are principally different in all samples from our profile. While the individual samples are characterized by a vast scatter of their T(206Pb/238U) age values (from 112 to 717 Ma), the corresponding T(207Pb/235U) values vary much less significantly (from 127 to 142 Ma) and are generally close to the true age of the U mineralization. The main reason for the distortion of the U-Pb system is the long-lasting (for tens of million years) migration of intermediate decay products in the 238U-206Pb(RD238U) in the samples. This process resulted in the loss of RD238U from domains with high U concentrations and the subsequent accommodation of RD238U at sites with low U concentrations. The long-term effect of these opposite processes resulted in a deficit or excess of 206Pb as the final product of 238U decay. The loss or migration of RD238U are explained by the occurrence of pitchblende in association with U oxides that have higher Si and OH concentrations than those in the pitchblende and a higher +6U/+4U ratio. The finely dispersed character of the mineralization and the loose or metamict texture of the material are the principal prerequisites for RD238U loss and an excess of 206Pb in adjacent domains with low U concentrations. Domains with low U contents in the zone with U mineralization serve as geochemical barriers (because of sulfides contained in them) at which long-lived RD238U(226Ra, 210Po, 210Bi, and 210Pb) were accommodated and subsequently caused an excess of 206Pb. The 235U-207Pb system remained closed because of the much briefer lifetime of the 235U decay products. This may account for the significant discrepancies between the T(206Pb/238U) and T(207Pb/235U) age values. RD238U was most probably lost via the migration of radioisotopes at the middle part and end of the 238U family (starting with 226Ra). The heavy Th, Pa, and U radioisotopes (234Th, 234Pa, 234U, and 230Th) that occur closer to the beginning of 238U decay, before 226Ra, only relatively insignificantly participated in the process. Our results show that the loss and migration of RD238U are, under certain conditions, the main (or even the only) process responsible for the distortion of the U-Pb system.  相似文献   
10.
Three groups of industrial uranium deposits that differ in the distribution of lanthanides in U oxides have been recognized. A dependence of the REE distribution type on the Yttrium content and Yttrium index YI = (La + Ce)/Y that controls the formation of REE phases capable of selective accumulation of lanthanides has been discovered. This indicates the important role of crystal–chemical fractionation in the distribution of lanthanides. Preferable accumulation of Sm–Gd by U oxides has been found to occur at relatively low contents of Y. In Proterozoic uranium deposits, the yttrium specialization of oxides predominates, while in most Phanerozoic deposits the lanthanum–cerium specialization is typical. These results extend the possibilities of using REEs in ores for purposes of study of the genesis of various uranium deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号