首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
地球物理   4篇
地质学   8篇
天文学   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2003年   3篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
A method was developed for the determination of organic halogens in water samples with the aim of minimizing matrix effects and simplifying the sample preparation technique commonly used. The method is based on the adsorption of organic halogens in modified hydrophilic divinylbenzene polymer columns and their elution with methanol. The adsorbent used enables rapid adsorption and desorption due to comparatively high operating flow rates and minimized solvent amounts. Furthermore, no additional reconcentration steps are needed. The methanol extract obtained is combusted with a standard EOX (extractable organic halogen) analyzer and the concentration of organically bound halogens is determined by microcoulometric analysis. The matrix effects are considerably reduced compared to the standard procedure (EN 1485) commonly used. A detection limit of 13 μg/L was established.  相似文献   
2.
A series of high structural state plagioclases (Ab-An) was crystallized from glasses. By exchanging Na for K in KCl melts, metastable K-plagioclases (Or-An) were prepared which possess the same structural state as the starting plagioclases. Both series were investigated at 980 K by lead borate solution calorimetry. Continuing the ideas of Carpenter and McConnell (1984) and Carpenter (1992a), the results can be interpreted as follows. In the high plagioclase series, the enthalpies of solution, jHsol, reflect the schemes of Al,Si ordering: (1) analbite-like (C2/m) ordering in the An-poor region 0hXAnА.2, (2) high albite-like (C1¥) ordering in intermediate plagioclases, and (3) anorthite-like (I1¥) ordering in the An-rich region 0.7AnБ. In regions 1 and 2, jHsol decreases as a function of XAn, but increases in region 3 as a consequence of the C1¥MI1¥ ordering reaction. Therefore, it is not a mixing effect but a compositionally restricted ordering effect which causes the excess enthalpies, jHex, to be positive in the plagioclase binary as a whole. Neglecting the existence of phase transitions at XAn=0.2 and XAn=0.7, jHex can be approximated by a two-parameter Margules model yielding WHAnAb=14Dž kJ/mol and WHAbAn=40Dž kJ/mol. jHsol values of I1¥ plagioclases (XAn>0.7) can be "corrected" for the C1¥MI1¥ ordering effect (Carpenter 1992a). When combining the corrected values with the jHsol data which were actually measured on the C1¥ plagioclases (XAn<0.7), negative excess enthalpies are generated in the plagioclase binary. This may be expected when C1¥ ordering occurs relative to topochemically monoclinic reference states of analbite and hypothetical anorthite devoid of I1¥ order. The solution experiments on the K-plagioclases resulted in similar characteristics as those found for the plagioclases. However, in addition to the ordering effects observed in the plagioclase binary, volume mismatch effects contribute to jHex in the K-plagioclase series. jHex can be represented by a Margules model with WHAnOr=60ᆞ kJ/mol and WHOrAn=91ᆢ kJ/mol when the phase transitions at XAn=0.2 and XAn=0.7 are again neglected. The contribution of the volume mismatch effect to jHex is considerable, as appears from the large difference between the K-plagioclase and the plagioclase Margules parameters. Their difference corresponds to a practically symmetrical dependence of jHexvolmism on composition, with WHvolmism=48ᆡ kJ/mol.  相似文献   
3.
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies.Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.  相似文献   
4.
5.
Sediment from two deep boreholes (∼400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.  相似文献   
6.
Today, ground-based optical remote sensing (ORS) has become an intensively used method for quantifying pollutant or greenhouse gas emissions from point or area sources, and for the validation of airborne or satellite remote sensing data. In this study, we present the results of a release experiment using acetylene (C2H2) as a tracer gas, where three ORS techniques were simultaneously tested for two main purposes: (1) the detection of emission sources and (2) the quantification of release rates. Therefore, passive and active open-path Fourier transform infrared spectroscopy (OP-FTIR) and open-path tunable diode laser absorption spectroscopy (TDLAS) were applied and evaluated. The concentration results of the active ORS methods are compared to those estimated by a Lagrangian stochastic atmospheric dispersion model. Our results reveal that passive OP-FTIR is a valuable tool for the rapid detection and imaging of emission sources and the spatial tracer gas distribution; while with active OP-FTIR and TDLAS, C2H2 concentrations in the sub-ppm range could be quantified that correlated well with the concentration data obtained by our modeling approach.  相似文献   
7.
8.
With the TanDEM‐X digital elevation model (DEM), the terrestrial solid surface is globally mapped with unprecedented accuracy. TanDEM‐X is a German X‐band radar mission whose two identical satellites have been operated in single‐pass interferometer configuration over several years. The acquired data are processed to yield a global DEM with 12 m independent posting and relative vertical accuracies of better than 2 m and 4 m in moderate and mountainous terrain, respectively. This DEM provides new opportunities for space‐borne remote‐sensing studies of the entire sample of terrestrial impact craters. In addition, it represents an interesting repository to aid in the search for new impact crater candidates. We have used the TanDEM‐X DEM to investigate the current set of confirmed impact structures. For a subsample of the craters, including small, midsized, and large structures, we compared the results with those from other DEMs. This quantitative analysis demonstrates the excellent quality of the TanDEM‐X elevation data. Our findings help to estimate what can be gained by using the TanDEM‐X DEM in impact crater studies. They may also be beneficial in identifying the regions and morphologies where the search for currently unknown impact structures might be most promising.  相似文献   
9.
Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop—Zones A–C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite–smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.  相似文献   
10.
Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma   总被引:1,自引:0,他引:1  
Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号