首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地质学   4篇
天文学   10篇
自然地理   1篇
  2017年   1篇
  2016年   1篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  1987年   1篇
  1973年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.  相似文献   
2.
Observed redshifts and magnitudes of seven classes of extragalactic objects, and number counts of QSRS are compared with predictions made by cosmological models. The uniform model U 1 and the proposed non-expanding model RHL 5 represent the observations very well. The latter offers numerous advantages. Absolute magnitudes and colors are determined.  相似文献   
3.
The Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (∼1000 km) show evidence for negatively charged ions up to ∼10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN, C3N/C4H and C5N. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes.  相似文献   
4.
Cassini Langmuir probe measurements in the inner magnetosphere of Saturn   总被引:1,自引:0,他引:1  
In the inner magnetosphere of Saturn, the plasma density and drift velocity are high enough, and the photoelectron current low enough, for a Langmuir probe to produce useful data on ion parameters. Plasma density and velocity are found by analyzing the current due to collected ions and emitted photoelectrons for a negative probe potential. In order to correctly analyze the data, the current caused by photoelectrons emitted from the probe must be known. For a spherical probe at negative bias this should be a constant current, but for Cassini's probe it varies with attitude. A likely cause of this is a leakage current from the stub to the probe. The plasma drift velocities derived from Langmuir probe measurements did not agree with those found by the Cassini plasma spectrometer in the inner magnetosphere, but did so elsewhere. A possible solution to this is a two-component plasma where the components have different drift velocities.  相似文献   
5.
This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.  相似文献   
6.
7.
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing the presence of dusty plasma near Enceladus’ South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 102 cm−3 before the closest approach to 105 cm−3 just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature, we show that the power law size distribution must hold down to at least 0.03 μm such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus’ plume is of the order of 102 cm−3 reducing to 1 cm−3 in the E-ring. The dust density for micrometer and larger sized grains is estimated to be about 10−4 cm−3 in the plume while it is about 10−6-10−7 cm−3 in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 μm sized grains. The effective dusty plasma Debye length is estimated and compared with inter-grain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 μm sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 μm sized grains, 1 s for 0.1 μm sized grains and about 10 s for 0.03 μm sized grains.  相似文献   
8.
Recent papers suggest the significant variability of conditions in Saturn’s magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ~1800 km (1.7 Rt) altitude by the average external field due to Saturn’s dipole moment. In this study, we analyze Cassini’s plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ~1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ~1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan’s ionosphere) complicate what is observed.  相似文献   
9.
As the saturnian magnetoplasma sweeps past Enceladus, it experiences both a decrease in electron content and sharp slowdown in the northern hemisphere region within ~5 Enceladus Radii (Re). This slowdown is observed by Cassini in regions not obviously associated with the southern directed plume-originating ions. We suggest herein that the decrease in northern hemisphere electron content and plasma slowdown could both be related to the presence of fine dust grains that are being accelerated by the Lorentz force created within the saturnian magnetic field system.  相似文献   
10.
Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号