首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   23篇
地质学   29篇
海洋学   8篇
天文学   7篇
自然地理   7篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
1.
The Solomon Sea Plate was widely developed during late Oligocene, separating the proto-West Melanesian Arc from the proto-Trobriand Arc. Spreading in the Bismarck Sea and in the Woodlark Basin resulted from interaction between the Pacific and Australian Plates, specifically from the collision of the proto-West Melanesian Arc with north New Guinea, which occurred after arc reversal. This model explains the extensive Miocene, Pliocene, and Quaternary volcanism of the Papua New Guinea mainland as it related to southward subduction of the Trobriand Trough. Our interpreted plate motions are concordant with the geological evidence onshore and also with complex tectonic features in the Solomon Sea Basin Region.  相似文献   
2.
3.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   
4.
Abstract

In this study, the internal circulation structures of the 14 July 1987 intense mesoscale convective system (MCS) are investigated using an improved high‐resolution version of the Canadian regional finite‐element model. It is found that although the MCS is characterized by a leading convective line followed by a trailing stratiform rainband, the associated circulation structures differ substantially from those in the classical midlatitude squall system. These include the rapid propagation and separation of the leading convection from the trailing rainband, the development of a surface‐based instead of an elevated rear‐to‐front descending flow and a shallow front‐to‐rear ascending flow associated with the stratiform precipitation, the generation of low‐ and mid‐level rather than mid‐ to upper‐level stratiform cloudiness and the development of a strong anticyclonic vorticity band at the back edge of the stratiform region. It is shown that the trailing stratiform rainband is dynamically forced by frontogenetical processes, and aided by the release of conditional symmetric instability and local orographical lifting. The intense leading and trailing circulations result from latent heat released by the convective and explicit cloud schemes, respectively. Sensitivity experiments reveal that the proper coupling of these two cloud schemes is instrumental in obtaining a realistic prediction of the above‐mentioned various mesoscale components. Vorticity budget calculations show that tilting of horizontal vorticity contributes the most to the amplification of the anticyclonic vorticity band, particularly during the squall's incipient stage. The sensitivity of the simulated squall system to other model physical parameters is also examined.  相似文献   
5.
Detrital volcanic and vein quartz, accompanied by felsic volcanic debris, occur as minor constituents in the Ordovician subduction‐related mafic volcanics of the Molong Volcanic Belt. In the western province of the Molong Volcanic Belt, detrital quartz is present in the three episodes of the mafic Volcanics. Volcanic quartz occurs in allochthonous limestone blocks in the Bendigonian Hensleigh Siltstone overlying the Mitchell Formation. The second volcanic episode (the Fairbridge Volcanics) commenced after a hiatus of approximately 20 million years and lasted around 10 million years from Darriwilian to Gisbornian time. Locally derived vein quartz, volcanic quartz and felsic detritus are concentrated at the bases of autochthonous Wahringa and Yuranigh Limestone Members of the volcanics and are extensive and abundant in basal beds of the regional Eastonian limestone body that transgressed over an eroded volcanic centre at Cargo. This early Eastonian debris, deposited early in an 8 million‐year volcanic hiatus preceding the final Ordovician Bolindian volcanism, establishes a pre‐Eastonian age for mineralisation at Cargo. It is inferred that the pauses in volcanism were preceded by magmatic fractionation, intrusion and hydrothermal activity and followed by erosion, subsidence and deposition of autochthonous limestones. Minor occurrences of vein and volcanic quartz are found in Bolindian volcanogenic sediments of the third volcanic phase. It is concluded that hydrothermal vein formation (and mineralisation by inference) was associated with pauses in volcanic activity throughout the Middle to early Late Ordovician over a wide area in the western province, culminating in the mineralisation at Cargo and Copper Hill near Molong. Volcanism in the eastern province of the Molong Volcanic Belt was continuous from at least Darriwilian to latest Ordovician time. Here, detrital hydrothermal vein quartz and volcanic quartz and felsic detritus are distributed through late Middle and early Late Ordovician turbidites of the Weemalla Formation. The possible existence of cycles in the source area like those of the Fairbridge Volcanics is masked by the distal nature of these deposits. Vein formation occurred in both provinces from late Middle Ordovician to early Late Ordovician, long before the formation of the world‐class mineral deposit at Cadia associated with the latest Ordovician Cadia Monzonite.  相似文献   
6.
Simultaneous measurements of rain acidity and dimethyl sulfide (DMS) at the ocean surface and in the atmosphere were performed at Amsterdam Island over a 4 year period. During the last 2 years, measurements of sulfur dioxide (SO2) in the atmosphere and of methane sulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO4 2-) in rainwater were also performed. Covariations are observed between the oceanic and atmospheric DMS concentrations, atmospheric SO2 concentrations, wet deposition of MSA, nss-SO4 2-, and rain acidity. A comparable summer to winter ratio of DMS and SO2 in the atmosphere and MSA in precipitation were also observed. From the chemical composition of precipitation we estimate that DMS oxidation products contribute approximately 40% of the rain acidity. If we consider the acidity in excess, then DMS oxidation products contribute about 55%.  相似文献   
7.
The floor of the western Solomon Sea (for new bathymetric map see inside back cover of this issue) is dominated by the arched and ridged basement of the Solomon Sea Basin, the partly-sediment-filled New Britain Trench, and a more completely filled trench, the Trobriand Trough. There is a deep basin where the trenches join (149° Embayment), and a silled basin west of the New Britain Trench (Finsch Deep). Submarine canyons descend from the west and south to the 149° Embayment. Abyssal fans and plains are structurally defined and locally disturbed by young faults. Probable submerged pinnacle reefs stand in water depths as great as 1,200 m.  相似文献   
8.
L1551NE is a very young (class 0 or I) low-mass protostar located close to the well-studied L1551 IRS 5. Here we present evidence, from 1.3 mm continuum interferometric observations at approximately 1&arcsec; resolution, for a binary companion to L1551NE. The companion, whose 1.3 mm flux density is approximately 13 that of the primary component, is located 1&farcs;43 ( approximately 230 AU at 160 pc) to the southeast. The millimeter-wave emission from the primary component may have been just barely resolved, with a deconvolved size of approximately 0&farcm;82x0&farcm;70 ( approximately 131x112 AU). The companion emission was unresolved (<100 AU). The pair is embedded within a flattened circumbinary envelope of size approximately 5&farcm;4x2&farcm;3 ( approximately 860x370 AU). The masses of the three components (i.e., from the circumstellar material of the primary star and its companion and the envelope) are approximately 0.044, 0.014, and 0.023 M middle dot in circle, respectively.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号