首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   
2.
Hurford  G.J.  Schmahl  E.J.  Schwartz  R.A.  Conway  A.J.  Aschwanden  M.J.  Csillaghy  A.  Dennis  B.R.  Johns-Krull  C.  Krucker  S.  Lin  R.P.  McTiernan  J.  Metcalf  T.R.  Sato  J.  Smith  D.M. 《Solar physics》2002,210(1-2):61-86
The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) observes solar hard X-rays and gamma-rays from 3 keV to 17 MeV with spatial resolution as high as 2.3 arc sec. Instead of focusing optics, imaging is based on nine rotating modulation collimators that time-modulate the incident flux as the spacecraft rotates. Starting from the arrival time of individual photons, ground-based software then uses the modulated signals to reconstruct images of the source. The purpose of this paper is to convey both an intuitive feel and the mathematical basis for this imaging process. Following a review of the relevant hardware, the imaging principles and the basic back-projection method are described, along with their relation to Fourier transforms. Several specific algorithms (Clean, MEM, Pixons and Forward-Fitting) applicable to RHESSI imaging are briefly described. The characteristic strengths and weaknesses of this type of imaging are summarized.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号