首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
天文学   3篇
  2011年   1篇
  2007年   2篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Abstract— A dark inclusion in the Vigarano CV3 carbonaceous chondrite consists almost exclusively of small (<5 μm in diameter) grains of Fe-rich olivine and is devoid of chondrules, Ca-Al-rich inclusions (CAIs) and their pseudomorphs. In backscattered electron images, this dark inclusion shows an unusual texture comprising a network of arcuate bands. Two or more bands occur roughly parallel, forming a set of succesive parallel bands, some crosscutting one another. The bands contain slightly higher amounts of relatively small (<1 μm) olivine grains and so are more densely packed than other areas. The olivine grains in the bands are slightly more Fe-rich than those in other areas. The bands commonly show gradation on the concave side due to a decrease in the abundance of the small Fe-rich olivine grains. Texturally, the arcuate bands closely resemble “dish structures” that are commonly observed in siltstones and sandstones on Earth. Dish structures are characterized by thin, dark-colored, subhorizontal to concave-upward laminations that are rich in relatively fine-grained material. On Earth, dish structures form during compaction and dewatering of unconsolidated fine-grained sediments; they are one of the characteristic sedimentary structures formed through fluidization of fine grains. The dark inclusion in Vigarano, therefore, provides the first evidence that sedimentary processes due to water migration may have taken place within planetesimals and further suggests that fluidization may have played a significant role in the formation of the carbonaceous chondrites.  相似文献   
2.
Abstract— Enstatite is one of the major constituent minerals in carbonaceous chondrites. Hydrothermal alteration experiments (26 in total) of enstatite were carried out at pH 0, 6, 7, 12, 13, and 14, at temperatures of 100, 200, and 300 °C, and for run durations of 24, 72, 168, and 336 h in order to provide constraints on the aqueous‐alteration conditions of the meteorites. The recovered samples were studied in detail by using powder X‐ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Under acidic and mildly acidic conditions (pH 0, 6), no significant alteration occurred, whereas under neutral to alkaline conditions (pH 7–14), serpentine and saponite formed in various proportions by replacing enstatite. At 300 °C for 168 h, serpentine formed under neutral to moderately alkaline conditions (pH 7, 12), and serpentine and saponite formed as unit cell‐scale coherent intergrowths under highly alkaline conditions (pH 13, 14). The amounts of phyllosilicates have a tendency to increase with increasing pH, temperature, and run duration. There is also a tendency for saponite to form at higher pH and temperature and under longer run‐durations than serpentine. The results indicate that alteration of enstatite is strongly dependent on the experimental conditions, especially pH. They suggest that CM chondrites experienced aqueous alteration under neutral to alkaline conditions, whereas CV and CI chondrites experienced aqueous alteration under more alkaline conditions. The results also suggest that aqueous alteration in CI chondrites occurred at higher temperatures than in CM chondrites, and aqueous alteration in CV chondrites occurred at even higher temperatures than in CI chondrites.  相似文献   
3.
Abstract— Micrometeorites have been significantly altered or melted by heating, which has been mainly ascribed to aerodynamic drag during atmospheric entry. However, if a major fraction of micrometeorites are produced by impacts on porous asteroids, they may have experienced shock heating before contact with the Earth's atmosphere (Tomeoka et al. 2003). A transmission electron microscope (TEM) study of the matrix of Murchison CM chondrite experimentally shocked at pressures of 10–49 GPa shows that its mineralogy and texture change dramatically, mainly due to shock heating, with the progressive shock pressures. Tochilinite is completely decomposed to an amorphous material at 10 GPa. Fe‐Mg serpentine is partially decomposed and decreases in amount with increasing pressure from 10 to 30 GPa and is completely decomposed at 36 GPa. At 49 GPa, the matrix is extensively melted and consists mostly of aggregates of equigranular grains of Fe‐rich olivine and less abundant low‐Ca pyroxene embedded in Si‐rich glass. The mineralogy and texture of the shocked samples are similar to those of some types of micrometeorites. In particular, the samples shocked at 10 and 21 GPa are similar to the phyllosilicate (serpentine)‐rich micrometeorites, and the sample shocked at 49 GPa is similar to the olivine‐rich micrometeorites. The shock heating effects also resemble the effects of pulse‐heating experiments on the CI and CM chondrite matrices that were conducted to simulate atmospheric entry heating. We suggest that micrometeorites derived from porous asteroids are likely to go through both shock and atmospheric‐entry heating processes.  相似文献   
4.
The results of a calcareous nannofossil biostratigraphic investigation of the North Fork Cottonwood Creek section of the Budden Canyon Formation (BCF; Hauterivian–Turonian) in northern California are summarized using the Boreal – cosmopolitan Boreal Nannofossil Biostratigraphy (BC) – Upper Cretaceous Nannofossil Biostratigraphy (UC) nannofossil zonal schemes of Bown et al. and Burnett et al. Sixteen intervals, ranging from the BC15 to UC8 zones, were established in the section. Combined biostratigraphic and magnetostratigraphic studies suggest a Hauterivian to mid‐Turonian age for the studied sequence. The Hauterivian–Barremian, Barremian–Aptian, Aptian–Albian, Albian–Cenomanian, and Cenomanian–Turonian stage boundaries were delineated near the top of the Ogo Member, below the Huling Sandstone Member, within the upper Chickabally Member, in the upper portion of the Bald Hills Member and within the Gas Point Member, respectively. Unconformities probably exist at the base of the Huling Sandstone Member and the upper part of the upper Chickabally Member. The nannofossil assemblage in the North Fork Cottonwood Creek suggests that the study area was under the influence of cold‐water conditions during the Barremian to Lower Aptian interval, shifting to tropical/warm‐water conditions during the Albian to Turonian interval as a result of the mid‐Cretaceous global warming. Although oceanic anoxic events have not yet been reported in the BCF, preliminary total organic carbon, along with nannofossil data, suggest the presence of the global Cenomanian–Turonian boundary oceanic anoxic event 2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号