首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地球物理   3篇
地质学   1篇
天文学   35篇
  2017年   1篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1997年   3篇
  1995年   2篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有39条查询结果,搜索用时 250 毫秒
1.
A further development of the Kostyuk-Pikelner's model is presented. The response of the chromosphere heated by non-thermal electrons of the power-law energy spectrum has been studied on the basis of the numerical solution of the one-dimensional time-dependent equations of gravitational gas dynamics. The ionization and energy loss for the emissions in the Lyman and Balmer lines have been determined separately for the optically thin and thick L-line layers. Due to the initial heating, a higher-pressure region is formed. From this region, disturbances propagate upwards (a shock wave with a velocity of more than 1000 km s-1) and downwards. A temperature jump propagates downwards, and a shock is formed in front of the thermal wave. During a period of several seconds after the beginning of this process, the temperature jump intensifies the downward shock wave and the large radiative loss gives rise to the high density jump ( 2/ 1 100). The numerical solution has been analyzed in detail for the case heating of the ionized and neutral plasma, and a value of this heating is close to the upper limit of the admissible values. In this case, the condensation located between the temperature jump and the shock wave front, may emit in the observed optical continuum.In their essential features, the gas dynamic processes during the flares in red dwarf atmospheres are the same as those in the solar atmosphere. However, the high atmospheric densities, smaller height scale in red dwarf atmospheres, and greater energy of this processes in stellar flares, give rise, in practice, to the regular generation of optical continuum. The photometric parameters of a source with n 015 cm-3, T 9000 K, and z 10 km are in a good agreement with observations.  相似文献   
2.
We present a direct comparison between two different techniques: time-distance helioseismology and a local correlation tracking method for measuring mass flows in the solar photosphere and in a near-surface layer. We applied both methods to the same dataset (MDI high-cadence Dopplergrams covering almost the entire Carrington rotation 1974) and compared the results. We found that, after necessary corrections, the vector flow fields obtained by these techniques are very similar. The median difference between directions of corresponding vectors is 24°, and the correlation coefficients of the results for mean zonal and meridional flows are 0.98 and 0.88, respectively. The largest discrepancies are found in areas of small velocities where the inaccuracies of the computed vectors play a significant role. The good agreement of these two methods increases confidence in the reliability of large-scale synoptic maps obtained by them.  相似文献   
3.
4.
In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some subphotospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.  相似文献   
5.
The influence of the dipolar magnetic field of a “hot Jupiter” with the parameters of the object WASP-12b on the mass-loss rate from its atmosphere is investigated. The results of three-dimensional gas-dynamical and magnetohydrodynamical computations show that the presence of a magnetic moment with a strength of ~0.1 the magnetic moment of Jupiter leads to appreciable variations of the matter flow structure. For example, in the case of the exoplanet WASP-12b with its specified set of atmospheric parameters, the stream from the vicinity of the Lagrange point L1 is not stopped by the dynamical pressure of the stellar wind, and the envelope remains open. Including the effect of the magnetic field leads to a variation in this picture—the atmosphere becomes quasi-closed, with a characteristic size of order 14 planetary radii, which, in turn, substantially decreases the mass-loss rate by the exoplanet atmosphere (by~70%). This reduction of the mass-loss rate due to the influence of the magnetic fieldmakes it possible for exoplanets to form closed and quasi-closed envelopes in the presence of more strongly overflowing Roche lobes than is possible without a magnetic field.  相似文献   
6.
We hereby present a review on solar oblateness measurements. By emphasizing historical data, we illustrate how the discordance between experimental results can lead to substantial improvements in the building of new technical apparatus as well as to the emergence of new ideas to develop new theories. We stress out the need to get accurate data from space to enhance our knowledge of the solar core in order to develop more precise ephemerids and ultimately build possible new gravitational theories.  相似文献   
7.
The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives.The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 m. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4 over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument.To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25) field centered about 160 north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field.MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.The MDI Engineering Team leaders include: D. Akin, B. Carvalho, R. Chevalier, D. Duncan, C. Edwards, N. Katz, M. Levay, R. Lindgren, D. Mathur, S. Morrison, T. Pope, R. Rehse, and D. Torgerson.  相似文献   
8.
Kosovichev  A. G.  Schou  J.  Scherrer  P. H.  Bogart  R. S.  Bush  R. I.  Hoeksema  J. T.  Aloise  J.  Bacon  L.  Burnette  A.  De Forest  C.  Giles  P. M.  Leibrand  K.  Nigam  R.  Rubin  M.  Scott  K.  Williams  S. D.  Basu  Sarbani  Christensen-dalsgaard  J.  DÄppen  W.  Duvall  T. L.  Howe  R.  Thompson  M. J.  Gough  D. O.  Sekii  T.  Toomre  J.  Tarbell  T. D.  Title  A. M.  Mathur  D.  Morrison  M.  Saba  J. L. R.  Wolfson  C. J.  Zayer  I.  Milford  P. N. 《Solar physics》1997,170(1):43-61
The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.  相似文献   
9.
The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS’s primary objective: determining the relation between the magnetism and dynamics of the Sun’s polar regions and the solar cycle.
T. AppourchauxEmail:
  相似文献   
10.
Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号