首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
天文学   29篇
  2000年   1篇
  1998年   5篇
  1996年   4篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The powerful cosmic ray flare of Sept. 29, 1989 occurred behind the limb and was observed over a wide spectral range. The analysis of optical, radio, and other relevant data suggest two phases of energy release. After an impulsive phase a prolonged post eruption energy release occurred in an extended region of the corona following the eruption of a large coronal mass ejection (CME). This phase is responsible for numerous coronal and interplanetary phenomena including the ground-level increase of cosmic rays.  相似文献   
2.
Electrons accelerated during solar flares are revealed by their electromagnetic radiation in different spectral ranges, emitted at different heights in the solar atmosphere. The observational analysis points to a common and continuous injection of particles. Based on this result, a quantitative investigation of the hard X-ray and microwave emissions observed during the 29 June, 1980 flare at 11: 40 UT has been performed. This is the first modelisation that takes into account both the inhomogeneity of the microwave source region and the dynamical evolution of the electron population. First results of our model computations demonstrate that during the most energetic phase of the event both hard X-rays and microwaves are described by electron populations resulting from the same injection function, and that the total numbers of electrons required for both emissions are compatible. Account for the inhomogeneity of the microwave source is shown to be a necessary condition for the interpretation of observed spectra.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   
3.
E. Rolli  A. Magun 《Solar physics》1995,160(1):29-40
The analysis of the dynamic evolution of the chromospheric electron density during solar flares is fundamental for the testing of solar flare models. For this purpose we developed a digital imaging spectrograph for the observation of higher Balmer lines below 400 nm with a time resolution of 1 s and an algorithm for the determination of the electron density from the observed line profiles. On January 5, 1992 a M1/1N flare was observed in H, H and Caii H and the temporal evolution of the electron density was determined. The chromospheric electron density rises several times from less than 3 × 1019 to 1 × 1020 m–3 during the hard X-ray peaks.  相似文献   
4.
The microwave and hard X-ray characteristics of 13 solar flares that produced microwave fluxes greater than 500 solar flux units have been analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Bern, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. The temporal and spectral behaviors of the microwaves as a function of frequency and the X-rays as a function of energy were tested for correlations, with results suggesting that optically thick microwave emission, at a frequency near the peak frequency, originates in the same electron population that produces the hard X-rays. The microwave emission at lower frequencies, however, is poorly correlated with emission at the frequency which appears to characterize this common source. A single-temperature and a multitemperature model were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A source area derived on the basis of the single-temperature model agrees to within the uncertainties with the observed area of the one burst for which spatially resolved X-ray images are available.Swiss National Science Foundation Fellow from the University of Bern.Also Energy/Environmental Research Group, Incorporated, Tucson, Arizona, and Department of Physics and Astronomy, University of North Carolina, Chapel Hill. Present address: Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.  相似文献   
5.
An analysis of solar radio burst spectra in the range 3–80 GHz is carried out using measurements of the observatories at Bern and Nobeyama supplemented by data from worldwide network stations. Special interest was focused on strong events at frequencies above 30 GHz. It is found that there exists an extended group of events with a flattening of the spectra at millimeter wavelengths. In particular, two types of flattening are observed: (i) a high-frequency flattening either following a monotonic spectral flux increase at cm-waves or forming a flat broad-band spectrum at mm-wavelengths ; (ii) a millimetric flattening as a decrease of the slope (i.e., a hardening) of the descending branch of the spectrum having a peak in the microwave range. Besides this, in complicated bursts a strong temporal evolution of millimeter spectra may occur resulting in either type of the flattening. Some factors capable of producing the millimeter flattening are considered: (1) superposition of multiple source regions of gyrosynchrotron radiation, (2) gyromagnetic radiation from a two-component energy spectrum of the accelerated electrons at high energies, or by a temporal hardening of the electron spectrum during extended flares, and (3) optically thin bremsstrahlung of evaporated plasma.Presented at the CESRA Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   
6.
The microwave spectrum of solar millisecond spikes   总被引:5,自引:0,他引:5  
M. Stähli  A. Magun 《Solar physics》1986,104(1):117-123
The microwave radiation from solar flares sometimes shows short and intensive spikes which are superimposed on the burst continuum. In order to determine the upper frequency limit of their occurrence and the circular polarization, a statistical analysis has been performed on our digital microwave observations from 3.2 to 92.5 GHz. Additionally, fine structures have been investigated with a fast (5 ms) 32-channel spectrometer at 3.47 GHz. We found that 10% of the bursts show fine structures at 3.2 and 5.2 GHz, whereas none occurred above 8.4 GHz. Most of the observed spikes were very short ( 10 ms) and their bandwidth varied from below 0.5 MHz to more than 200 MHz. Simultaneous observations at two further frequencies showed no coincident spikes at the second and third harmonic. The observations can be explained by the theory of electron cyclotron masering if the observed bandwidths are determined by magnetic field inhomogeneities or if the rise times are independent of the source diameters. The latter would imply source sizes between 50 and 100 km.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   
7.
A study of the onset phase often great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale of some tens of seconds. In nine of the bursts two phases of emission can be distinguished during the onset phase: the pre-flash phase, during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed, followed ten to some tens of seconds later by the flash phase, where the count rate in all detector channels rises simultaneously to within some seconds. For two of the events strong -ray line emission is observed and is shown to start close to the onset of the flash phase.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   
8.
We study the active region NOAA 6718 and the development of a (2N, M3.6) flare in radio and H. Due to our knowledge of the magnetic field structure in the active region we are able to associate the different radio flare burst components with the stages in the H flare evolution. A discussion of the data in terms of chromospheric flare kernel heating reveals that in the present case the observed flare-related radio burst continuum switch-off is caused by the penetration of hot, ablated gas into the coronal radio source.  相似文献   
9.
Observations of a coronal transient event were obtained in white light by the Skylab coronagraph and at metric wavelengths by the radioheliograph and spectrograph at Culgoora and the spectrograph-interferometer at Boulder. The continuum radio burst was found to originate above the outward-moving white light loop - a region of compressed material headed by a bow wave. The computed density in the region of radio emission, based on either gyro-synchrotron or harmonic plasma radiation mechanisms, was approximately 10 times the ambient coronal density; this is compatible with the density deduced from the white light observations. The magnetic energy density derived from the radio observations was greater than 10 times the thermal energy density, marginally larger than the kinetic energy density in the fastest moving portion of the transient, and considerably larger in most other regions. The ambient medium, the white light front, the compression region, the loop, and the slower, massive flow of material behind are each examined. It is found that the plasma was magnetically controlled throughout, and that magnetic forces provided the principal mechanism for acceleration of the transient material from the Sun.Also, High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado.Now at Los Alamos Scientific Laboratory, Los Alamos, New Mexico.The National Center for Atmospheric Research is sponsored by the National Science Foundation.On leave from Institute of Applied Physics, University of Berne, Switzerland.Also, Division of Radiophysics, CSIRO, Sydney, Australia.  相似文献   
10.
It is known that mode coupling may occur in quasi-transverse magnetic field regions of the solar corona, which produces linear polarization at microwave frequencies. A microwave polarimeter measuring all 4 Stokes parameters at 8.918 GHz simultaneously at three different highfrequency bandwidths (40 kHz, 400 kHz and 5 MHz) has been developed in order to observe the linear component and its Faraday rotation. The respective minimum detectable changes of the Stokes parameters I, Q, U and V are 9, 3 and 1 solar flux unit at an integration time of 1 s. For burst intensities greater than 300 solar flux units, the minimum detectable degree of linear and circular polarization is 1 %–3 %, depending on the bandwidth. Observations of 68 bursts showed that most of the bursts were circularly polarized. No linear polarization could be found within the limits of accuracy of our polarimeter. Two possible explanations for this result are discussed. The possibility of mode coupling however cannot be excluded from these first observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号