首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
大气科学   4篇
地质学   1篇
天文学   14篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2004年   2篇
  1998年   2篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1971年   1篇
排序方式: 共有19条查询结果,搜索用时 875 毫秒
1.
2.
The conformal-cubic atmospheric model, a variable-resolution global model, is applied at high spatial resolution to perform simulations of present-day and future climate over southern Africa and over the Southwest Indian Ocean. The model is forced with the bias-corrected sea-surface temperatures and sea-ice of six coupled global climate models that contributed to Assessment Report 4 of the Intergovernmental Panel on Climate Change. All six simulations are for the period 1961–2100, under the A2 emission scenario. Projections for the latter part of the 21st century indicate a decrease in the occurrence of tropical cyclones over the Southwest Indian Ocean adjacent to southern Africa, as well as a northward shift in the preferred landfall position of these systems over the southern African subcontinent. A concurrent increase in January to March rainfall is projected for northern Mozambique and southern Tanzania, with decreases projected further south over semi-arid areas such as the Limpopo River Basin where these systems make an important contribution as main cause of widespread heavy rainfall. It is shown that the projected changes in tropical cyclone attributes and regional rainfall occur in relation to changes in larger scale atmospheric temperature, pressure and wind profiles of the southern African region and adjacent oceans.  相似文献   
3.
Hα observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a ‘disparition brusque’. The period of observation was from 10 ∶ 45 to 13 ∶ 30 UT on 22 June, 1981. Velocity and intensity fluctuations in Hα were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube.  相似文献   
4.
Theoretical and Applied Climatology - Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral...  相似文献   
5.
Malherbe  J. M.  Schmieder  B.  Mein  P.  Mein  N.  Van Drielgesztelyi  L.  Von Uexküll  M. 《Solar physics》1998,180(1-2):265-284
Using multi-wavelength observations obtained with the Tenerife telescopes (VTT and GCT) and with the Yohkoh satellite, we observed new emerging flux with an associated arch filament system (AFS) in the chromosphere and bright X-ray loops in the corona. We observed the change of connectivity of the X-ray loop footpoints which may be at the origin of the occurrence of a subflare. Densities, gas and magnetic pressures of cold AFS and hot loops were derived and discussed. The extrapolation of the photospheric magnetic field observed with the GCT in a linear force-free field assumption (constant ) shows that this region, in spite of having roughly a global potential configuration, consists of two systems of arch filaments. We found these two systems best fitted with two sheared magnetic topologies of opposite values of ± 0.1 Mm-1  相似文献   
6.
Numerical data processing is applied to the high-resolution images-of the solar corona obtained with the 20 cm coronagraph of the Pic du Midi observatory. Two complementary methods are proposed to solve some classical difficulties usually met in the morphological analysis of the solar corona, namely the brightness gradient in the inner and medium corona, the low contrast of numerous emissive regions and the superimposition along the line of sight of different structures. The methods which are described in this paper may help to resolve the complex coronal active regions into fine structures which is now necessary to interpret all observed corona data.  相似文献   
7.
H observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a disparition brusque. The period of observation was from 10 45 to 13 30 UT on 22 June, 1981. Velocity and intensity fluctuations in H were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube.  相似文献   
8.
Kejun  Li  Schmieder  B.  Malherbe  J.-M.  Roudier  Th.  Wiik  J.-E. 《Solar physics》1998,183(2):323-338
The Multichannel Subtractive Double Pass spectrograph (MSDP) is designed to observe line profiles in a 2D field of view with a good spatial and temporal resolution. In order to deal with this unique opportunity, we introduce a new method for fitting the hydrogen H line formed in prominences and deriving various plasma parameters from line profile observations. A quiescent prominence was observed on 5 June 1996, at the Pic du Midi during an international campaign between 09:30 UT and 11:00 UT with the MSDP spectrograph operating in H at the Turret Dome. Using the new fitting method, we show that the temperature, column density of hydrogen atoms and microturbulent velocity of the prominence are respectively about 8500 K, 1.4×1012 cm–2, and 10 to 20 km s–1. The electron density of the prominence is about 1.8×1010 cm–3.  相似文献   
9.
Van Driel-Gesztelti  L.  Csepura  G.  Schmieder  B.  Malherbe  J.-M.  Metcalf  T. 《Solar physics》1997,172(1-2):151-160
We present a study of the evolution of NOAA AR 7205 in the photosphere and corona, including an analysis of sunspot motions, and show the evolutionary aspects of flare activity using full-disc white-light observations from Debrecen, vector magnetograms from Mees Observatory, Hawaii, and Yohkoh soft X-ray observations. NOAA AR 7205 was born on the disc on 18 June, 1992. During the first 3 days it consisted of intermittent minor spots. A vigorous evolution started on 21 June when, through the emergence and merging (v 100–150 m s-1) of several bipoles, a major bipolar sunspot group was formed. Transverse magnetic fields and currents indicated the presence of shear (clockwise twist) already on 21 June (with 0.015 Mm-1). On 23 June, new flux emerged in the trailing part of the region with the new negative polarity spot situated very close to the big positive polarity trailing spot of the main bipole. The secondary bipole seemed to emerge with high non-potentality (currents). From that time the AR became the site of recurrent flare activity. We find that all 14 flares observed with the Yohkoh satellite occurred between the highly sheared new bipole and the double-headed principal bipole. Currents observed in the active region became stronger and more extended with time. We propose that the currents have been (i) induced by sunspot motions and (ii) increased by non-potential flux emergence leading to the occurrence of energetic flares (X1.8 and X3.9). This observation underlines the importance of flare analysis in the context of active region evolution.  相似文献   
10.
Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool H flare loops with predicted densities of 1013 cm–3, and a small gap of 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号