首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
地球物理   3篇
天文学   51篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
We analyze the UV and X-ray data obtained by the SMM satellite for the flare starting at 02:36 UT on November 12, 1980 in AR 2779. From a detailed revision of the Ov emission, we find that the observations are compatible with energy being released in a zone above the magnetic inversion line of the AR intermediate bipole. This energy is then transported mainly by conduction towards the two distant kernels located in the AR main bipole. One of these kernels is first identified in this paper. Accelerated particles contribute to the energy transport only during the impulsive phase.We model the observed longitudinal magnetic field by means of a discrete number of subphotospheric magnetic poles, and derive the magnetic field overall topology. As in previous studies of chromospheric flares, the Ov kernels are located along the intersection of the computed separatrices with the photosphere. Especially where the field-line linkage changes discontinuously, these kernels can be linked in pairs by lines that extend along separatrices. Our results agree with the hypothesis of magnetic energy released by magnetic reconnection occurring on separatrices.  相似文献   
2.
We present a detailed study of a 1B/M6.9 impulsive flare combining high time resolution (1 ms) and instantaneous emission source localization observations at submillimeter frequencies (212 GHz), obtained with the solar submillimeter telescope (SST), and Hα data from the Hα solar telescope for argentina (HASTA). The flare, starting at 16:34 UT, occurred in active region (AR) 9715 (NOAA number) on November 28, 2001, and was followed by an Hα surge. We complement our data with magnetograms from the Michelson Doppler Imager (SOHO/MDI). SST observed a short impulsive burst at 212 GHz, presenting a weak bulk emission (of about 90 sfu) composed of a few shorter duration structures. The integrated Hα and the 212 GHz light curves present a remarkable agreement during the impulsive phase of the event. The delay between both curves stays below 12 s (the time resolution of the Hα telescope). The flare as well as the surge are linked to new flux emergence very close to the main AR bipole. Taking into account the AR magnetic field evolution, we infer that magnetic field reconnection, occurring at low coronal levels, could have been at the origin of the flare; while in the case of surge this would happen at the chromospheric level.  相似文献   
3.
Coronal mass ejections (CMEs) are thought to be the way by which the solar corona expels accumulated magnetic helicity which is injected into the corona via several methods. DeVore (2000) suggests that a significant quantity is injected by the action of differential rotation, however Démoulin et al. (2002b), based on the study of a simple bipolar active region, show that this may not be the case. This paper studies the magnetic helicity evolution in an active region (NOAA 8100) in which the main photospheric polarities rotate around each other during five Carrington rotations. As a result of this changing orientation of the bipole, the helicity injection by differential rotation is not a monotonic function of time. Instead, it experiences a maximum and even a change of sign. In this particular active region, both differential rotation and localized shearing motions are actually depleting the coronal helicity instead of building it. During this period of five solar rotations, a high number of CMEs (35 observed, 65 estimated) erupted from the active region and the helicity carried away has been calculated, assuming that each can be modeled by a twisted flux rope. It is found that the helicity injected by differential rotation (–7×1042 Mx2) into the active region cannot provide the amount of helicity ejected via CMEs, which is a factor 5 to 46 larger and of the opposite sign. Instead, it is proposed that the ejected helicity is provided by the twist in the sub-photospheric part of the magnetic flux tube forming the active region.  相似文献   
4.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   
5.
A series of flares (GOES class M, M and C) and a CME were observed in close succession on 20 January 2004 in NOAA 10540. Radio observations, which took the form of types II, III and N bursts, were associated with these events. We use the combined observations from TRACE, EIT, Hα images from Kwasan, MDI magnetograms and GOES to understand the complex development of this event. Contrary to a standard interpretation, we conclude that the first two impulsive flares are part of the CME launch process while the following long-duration event flare represents simply the recovery phase. Observations show that the flare ribbons not only separate but also shift along the magnetic inversion line so that magnetic reconnection progresses stepwise to neighboring flux tubes. We conclude that “tether cutting” reconnection in the sheared arcade progressively transforms it to a twisted flux tube, which becomes unstable, leading to a CME. We interpret the third flare, a long-duration event, as a combination of the classical two-ribbon flare with the relaxation process following forced reconnection between the expanding CME structure and neighboring magnetic fields. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   
6.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the centre of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110° within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasi-separatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.  相似文献   
7.
The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.  相似文献   
8.
Seeking to establish whether active-region upflow material contributes to the slow solar wind, we examine in detail the plasma upflows from Active Region (AR) 10978, which crossed the Sun’s disc in the interval 8 to 16 December 2007 during Carrington rotation (CR) 2064. In previous work, using data from the Hinode/EUV Imaging Spectrometer, upflow velocity evolution was extensively studied as the region crossed the disc, while a linear force-free-field magnetic extrapolation was used to confirm aspects of the velocity evolution and to establish the presence of quasi-separatrix layers at the upflow source areas. The plasma properties, temperature, density, and first ionisation potential bias [FIP-bias] were measured with the spectrometer during the disc passage of the active region. Global potential-field source-surface (PFSS) models showed that AR 10978 was completely covered by the closed field of a helmet streamer that is part of the streamer belt. Therefore it is not clear how any of the upflowing AR-associated plasma could reach the source surface at 2.5 R and contribute to the slow solar wind. However, a detailed examination of solar-wind in-situ data obtained by the Advanced Composition Explorer (ACE) spacecraft at the L1 point shows that increases in O7+/O6+, C6+/C5+, and Fe/O – a FIP-bias proxy – are present before the heliospheric current-sheet crossing. These increases, along with an accompanying reduction in proton velocity and an increase in density are characteristic of both AR and slow-solar-wind plasma. Finally, we describe a two-step reconnection process by which some of the upflowing plasma from the AR might reach the heliosphere.  相似文献   
9.
During the rising phase of Solar Cycle 24 tremendous activity occurred on the Sun with rapid and compact emergence of magnetic flux leading to bursts of flares (C to M and even X-class). We investigate the violent events occurring in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed in November 2010 with instruments onboard the Solar Dynamics Observatory and from Earth. Within one day the total magnetic flux increased by 70 % with the emergence of new groups of bipoles in AR 11123. From all the events on 11 November, we study, in particular, the ones starting at around 07:16 UT in GOES soft X-ray data and the brightenings preceding them. A magnetic-field topological analysis indicates the presence of null points, associated separatrices, and quasi-separatrix layers (QSLs) where magnetic reconnection is prone to occur. The presence of null points is confirmed by a linear and a non-linear force-free magnetic-field model. Their locations and general characteristics are similar in both modelling approaches, which supports their robustness. However, in order to explain the full extension of the analysed event brightenings, which are not restricted to the photospheric traces of the null separatrices, we compute the locations of QSLs. Based on this more complete topological analysis, we propose a scenario to explain the origin of a low-energy event preceding a filament eruption, which is accompanied by a two-ribbon flare, and a consecutive confined flare in AR 11123. The results of our topology computation can also explain the locations of flare ribbons in two other events, one preceding and one following the ones at 07:16 UT. Finally, this study provides further examples where flare-ribbon locations can be explained when compared to QSLs and only, partially, when using separatrices.  相似文献   
10.
We present a bi-orthogonal decomposition of the temporal and latitudinal distribution of solar magnetic fields from synoptic magnetograms. Results are compared with a similar decomposition of the distribution of sunspots since 1874. We show that the butterfly diagrams can be interpreted as the result of approximately constant amplitudes and phases of two oscillations with periods close to 22 years. A clear periodicity of 7 years can also be identified in the most energetic modes of both spatio-temporal series. These results can be used to obtain relevant information concerning the physics of the solar dynamo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号