首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   55篇
  国内免费   1篇
测绘学   19篇
大气科学   48篇
地球物理   256篇
地质学   264篇
海洋学   10篇
天文学   180篇
综合类   9篇
自然地理   40篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   12篇
  2019年   11篇
  2018年   50篇
  2017年   41篇
  2016年   63篇
  2015年   56篇
  2014年   48篇
  2013年   57篇
  2012年   31篇
  2011年   32篇
  2010年   37篇
  2009年   42篇
  2008年   26篇
  2007年   32篇
  2006年   35篇
  2005年   25篇
  2004年   15篇
  2003年   21篇
  2002年   13篇
  2001年   13篇
  2000年   14篇
  1999年   9篇
  1998年   21篇
  1997年   4篇
  1996年   13篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1973年   4篇
  1971年   4篇
  1969年   2篇
  1960年   1篇
排序方式: 共有826条查询结果,搜索用时 15 毫秒
1.
Theory of dynamical systems offers a possibility of investigating the space of all possible solutions. In the context of simple cosmological models such like Varying Speed of Light Friedman-Robertson-Walker (VSL FRW) models there exists a systematic method of reducing field equations to certain two-dimensional dynamical system. One of the features of this reduction is the possibility of representing the model as a Hamiltonian system in which the properties of the potential function V(X) can serve as a tool for qualitative classification of possible evolutions of a(t). Some important features like resolution of the flatness problem, existence of event horizons near the singularity can be visualized as domains on the phase-space. Then one is able to see how large is the class of solutions (labelled by the initial conditions) leading to the desired property. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Analyses of primary and early diagenetic fluid inclusions in the halite from the Late Ordovician Mallowa Salt, Canning Basin, Western Australia indicate a Ca‐rich composition and high concentration of parent brines in the basin which were close to sylvite and carnallite precipitation. The salt‐bearing series in the sampled interval was overheated up to 62 °C. The recorded differences in gas compositions result from the input of several gas sources including dispersed organic matter in the salt series and hydrocarbon deposits in the underlying rocks. The high concentration of the brines in fluid inclusions does not allow quantitative reconstruction of the chemical composition of Late Ordovician parent seawater. Using the information from Early Cambrian and Late Silurian basins as a proxy, however, the new data indicate that Late Ordovician seawater was undoubtedly Ca‐rich and, in comparison with modern seawater, had a similar K content, considerably lower Mg content (c. 30%), approximately three times the Ca content and one‐third the SO4 content.  相似文献   
3.
This article presents the application of a multivariate prediction technique for predicting universal time (UT1–UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1–UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1–UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1–UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1–UTC based on LS extrapolation or on LS + AR. In particular, the UT1–UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.  相似文献   
4.
5.
Stress concentrations produced by rock deformation due to extraction in underground mines induce seismicity that can take the shape of violent and quite dangerous rockbursts.The hazard evaluation presented in this paper is based on a Bayesian probabilistic synthesis of information determined from mining situations during excavation, with previous and present data from microseismicity and seismoacustics.The method proposed in this study is an example of time-dependent on-line seismic hazard evaluation. All results presented were obtained retrospectiely for different underground coal mines in Poland and Czechoslovakia.On leave from Institute of Geophysics, Polish Academy of Sciences 01-452 Warszawa, ul. Ksiecia Janusza 64, Poland.  相似文献   
6.
The 26 December 2004 tsunami covered significant portion of a coastal zone with a blanket of potentially contaminated sediments. In this report are presented results on mercury concentrations in sediments deposited by the tsunami in a coastal zone of Thailand. Since the total mercury concentrations are insufficient to assess mercury mobility and bioavailability in sediment, its fractionation was applied. Sediments were sampled within 50 days after the event and analyzed by sequential extraction method. The procedure of sequential extraction involved five subsequent stages performed with solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH, and aqua regia. The mean concentration of total mercury in sediments was 119 ± 50 ng g−1 dry mass (range 66–230). The fractionation revealed that mercury is mainly bound to the least bioavailable sulphides 75 ± 6% (range 62–86), organomercury compounds 14 ± 7% (range 4–26), and humic matter 9 ± 7% (range 1–27). The lowest contributions bring fractions of water-soluble mercury 0.8 ± 1.0% (range 0.1–3.6) and acid soluble mercury 0.9 ± 0.5% (range 0.2–2.1). Although, the total mercury content is similar in a reference sample and in the tsunami sediments, the highly toxic organomercury fraction contribution is higher in the latter. The results were compared with chemical and sedimentological properties of the sediments but no significant correlations were obtained between them.  相似文献   
7.
A new type of gold mineralisation containing minor amounts of platinum and palladium has been found proximal to the secondary redox interface located below the Cu-Ag Kupferschiefer orebody of the Polkowice-Sieroszowice mine in the south-western part of the Lubin-Sieroszowice district, Poland. This deposit can be classified as redbed-type gold. Our study shows that gold, platinum and palladium occur in secondary red-coloured sections of the basal Zechstein sedimentary rocks and in the uppermost Weissliegendes sandstone. Noble metal mineralisation occurs within an average interval of 0.22 m, which lies directly below the copper ores. The average grade of the horizon is 2.25 ppm Au, 0.138 ppm Pt and 0.082 ppm Pd with a metal content of several tens of tonnes of gold. A transition zone has been recognised between the gold-bearing horizon and the copper deposit. This transition zone is characterised by the presence of low grades of copper (<0.2 wt%) and elevated gold contents (>0.5 ppm). Native gold accompanied by electrum, mercury-bearing gold, haematite, covellite, chalcocite, bornite and chalcopyrite has been identified in the gold-bearing horizon. In some sections, Pd-arsenides, tetra-auricupride, Co-arsenides, clausthalite, tennantite, digenite, yarrowite, spionkopite and galena have also been noted.  相似文献   
8.
Natural production of the radionuclide chlorine-36 (36Cl) has provided a valuable tracer for groundwater studies. The nuclear industry, especially the testing of thermonuclear weapons, has also produced large amounts of 36Cl that can be detected in many samples of groundwater. In order to be most useful in hydrologic studies, the natural production prior to 1952 should be distinguished from more recent artificial sources. The object of this study was to reconstruct the probable preanthropogenic levels of 36Cl in groundwater in the United States. Although significant local variations exist, they are superimposed on a broad regional pattern of 36Cl/Cl ratios in the United States. Owing to the influence of atmospherically transported ocean salt, natural ratios of 36Cl/total Cl are lowest near the coast and increase to a maximum in the central Rocky Mountains of the United States. Electronic Publication  相似文献   
9.
The Lufilian arc is an orogenic belt in central Africa that extends between Zambia and the Democratic Republic of Congo (DRC) and deforms the Neoproterozoic-Lower Palaeozoic metasedimentary succession of the Katanga Supergroup. The arc contains thick bodies of fragmental rocks that include blocks reaching several kilometres in size. Some megablocks contain Cu and Cu–Co-mineralised Katangan strata. These coarse clastic rocks, called the Katangan megabreccias, have traditionally been interpreted in the DRC as tectonic breccias formed during Lufilian orogenesis due to friction underneath Katangan nappes. In mid-90th, several occurrences in Zambia have been interpreted in the same manner. Prominent among them is an occurrence at Mufulira, considered by previous workers as a ≈1000 m thick tectonic friction breccia containing a Cu–Co-mineralised megablock.This paper presents new results pertaining to the lower stratigraphic interval of the Katanga Supergroup at Mufulira and represented by the Roan Group and the succeeding Mwashya Subgroup of the Guba Group. The interval interpreted in the past as tectonic Roan megabreccia appears to be an almost intact sedimentary succession, the lower part of which consists of Roan Group carbonate rocks with siliciclastic intercalations containing several interbeds of matrix-supported conglomerate. A Cu–Co-mineralised interval is not an allochthonous block but a part of the stratigraphic succession underlain and overlain by conglomerate beds, which were considered in the past as tectonic friction breccias. The overlying megabreccia is a syn-rift sedimentary olistostrome succession that rests upon the Roan strata with a subtle local unconformity. The olistostrome succession consists of three complexes typified by matrix-supported debris-flow conglomerates with Roan clasts. Some of the conglomerate beds pass upwards to normally graded turbidite layers and are accompanied by solitary slump beds. The three conglomeratic assemblages are separated by two intervals of sedimentary breccia composed of allochthonous Roan blocks interpreted as mass-wasting debris redeposited into the basin by high-volume sediment-gravity flows. Sedimentary features are the primary characteristics of the conglomerate interbeds in the Roan succession and of the overlying megabreccia (olistostrome) sequence. Both lithological associations are slightly sheared and brecciated in places, but stratigraphic continuity is retained throughout their succession. The olistostrome is deformed by an open fold, the upper limb of which is truncated by and involved in a shear zone that extends upwards into Mwashya Subgroup strata thrust above.Based on the sedimentary genesis of the megabreccia, local tectonostratigraphic relations and correlation with the succession present in the Kafue anticline to the west, the Mwashya Subgroup, formerly considered as a twofold unit, is redefined here as a three-part succession. The lower Mwashya consists of an olistostrome complex defined as the Mufulira Formation, the middle Mwashya (formerly lower Mwashya) is a mixed succession of siliciclastic and carbonate strata locally containing silicified ooids and tuff interbeds, and the term upper Mwashya is retained for a succession of black shales with varying proportions of siltstone and sandstone interlayers. The sedimentary genesis and stratigraphic relations of the megabreccia at Mufulira imply that the position and tectonostratigraphic context of the Katangan Cu and Cu–Co orebodies hosted in megablocks associated with fragmental rocks, which were in the past interpreted as tectonic friction breccias, need to be critically re-assessed in the whole Lufilian arc.  相似文献   
10.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号