首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   5篇
  国内免费   5篇
测绘学   2篇
大气科学   23篇
地球物理   33篇
地质学   111篇
海洋学   17篇
天文学   11篇
自然地理   10篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   8篇
  2019年   1篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   15篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   8篇
  2010年   4篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1967年   1篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
1.
A study was conducted to determine polycyclic aromatic hydrocarbons (PAHs) distribution and microbial population changes in brackish sediments from an Italian lagoon included in the Ramsar List of Wetlands of International Importance. The presence and level of PAH-degrading bacteria were estimated by the most probable number (MPN) enumeration technique, whereas degradation capability towards target compounds was checked against loss of spiked PAHs (Phenanthrene, Anthracene and Fluoranthene) in MPN tubes after incubation in optimal conditions. Chemical analyses and microbiological counts suggested a potential for PAHs biodegradation by natural occurring populations of sediment microorganisms, thus indicating an "optimal range" in sediment PAHs concentrations, outside of which the natural selection of the indigenous microflora did not occur. The MPN procedure here described, provided an effective and reliable way to simultaneously determine microbial population densities and subsequent confirmation of the biodegradation capability of sediment indigenous microflora when exposed to laboratory and environmental concentrations of PAHs.  相似文献   
2.
The microhabitat preferences and depth distribution of blenniid species (Blenniidae) in the Gulf of Trieste (North Adriatic Sea) were surveyed using the all‐occurrence sampling method, a non‐destructive visual census method, aided by SCUBA diving. Fourteen species were identified during the entire survey. Four species showed to be indiscriminate in their microhabitat choice while 10 species were classified as infrequent in the surveyed coastal area. A statistically significant correlation was found between the blenniid assemblage and nine microhabitat variables. The blenniid assemblage was divided in two main groups, by the use of canonical correspondence analysis, electivity index, and the depth distribution analysis. The first group comprises species that dwell in surface waters and show a high positive correlation with boulders, the presence of Mytilus galloprovincialis, cirripeds and empty holes bored by Lithophaga lithophaga. The second group includes species that mostly inhabit deeper waters and show a high positive correlation with rocks covered by precoralligenous bioformations.  相似文献   
3.
As part of a study of estuarine selenium cycling, we measured the concentration, chemical form (speciation), and distribution of particulate selenium under various river flow conditions in the North San Francisco Bay (from the Golden Gate to the Sacramento and San Joaquin Rivers). We also conducted laboratory studies on the accumulation of selenium by phytoplankton, the critical first step in the transformation of dissolved to particulate selenium. Total particulate selenium concentration in the North SF Bay was relatively constant between high and low flow periods, ranging spatially from 0.05 to 0.35 nmol l−1 and comprising between 5 and 12% of the total water column selenium inventory. Mean concentrations were generally highest in the Carquinez Strait–Suisun Bay region (salinity 0–17) and lowest in Central Bay. However, selenium content of suspended particles varied with river flow, with higher content during low flow (9.76 ± 4.17 nmol g−1; mean ± sd; n = 67) compared to high flow (7.10 ± 4.24 nmol g−1; n = 39). Speciation analyses showed that most particulate selenium is organic selenide (45 ± 27%), with a smaller proportion (typically <30%) of adsorbed selenite + selenate and a varying proportion (35 ± 28%) of elemental selenium. Based on the amount of elemental selenium in the seston (total suspended material), we calculate that resuspension of estuarine sediments could contribute 29–100% of particulate selenium in the water column. While selenium content of SF Bay seston (>0.4 μm) is relatively unenriched compared to phytoplankton (13.6–155 nmol g−1 dry weight) on a mass basis, when normalized to carbon or nitrogen, seston contains a similar selenium concentration to SF Bay sediments or phytoplankton cultures. SF Bay seston is thus comprised of selenium-rich phytoplankton and phyto-detritus, but also inorganic clay mineral particles that effectively “dilute” total particulate selenium. Selenium concentrations in algal cultures (11 species) exposed to 90 nmol l−1 selenite show relatively large differences in selenium accumulation, with the diatoms, chlorophytes and cryptophytes generally having lower selenium cell content (3.8 ± 2.7 × 10−9 nmol selenium cell−1) compared to the dinoflagellates (193 ± 73 × 10−9 nmol selenium cell−1). Because phytoplankton are such a rich (but variable) source of selenium, their dynamics could have a profound effect on the particulate selenium inventory in the North SF Bay.  相似文献   
4.
Coleps hirtus viridis was the dominant species of the planktonic ciliate community of Lake Fühlinger See (Germany) during the study in 1999 and 2000. Total ciliate densities ranged from 120 to 42,000 ind. l−1 in 1999 and up to 8,000 ind. l−1 in 2000. Coleps contributed up to 98% to both total ciliate abundance and biomass and made up an average of 64% of the total ciliate biomass. Oligotrichs (Rimostrombidium, Strobilidium) dominated the epilimnetic zone, whereas peritrich ciliates (Pelagovorticella, Vorticella) were predominantly located in the hypolimnion. The population maximum of Coleps changed locations from the epilimnion in early summer to the hypolimnion (up to 40,000 ind. l−1) during stratification. High growth rates in the hypolimnion, presence of endosymbiontic algae and the ability to ingest detritus seem to be important for the success.Growth rates of Coleps in June were determined by Landry-Hassett dilution experiments in both the epilimnion and the hypolimnion. The instantaneous growth rates were similar in both layers (0.6 d−1), but a distinctly higher instantaneous mortality was estimated for the epilimnion. These high loss rates may be due to grazing pressure by cladocerans.The significance of the histophagous feeding of Coleps was evaluated through an experiment using killed zooplankton. Parts of Daphnia magna were incorporated at rates of about 1,100 μm3 ind.−1 h−1 by Coleps without endosymbiotic algae and at rates of 500 μm3 ind.−1 h−1 by Coleps with endosymbionts. These high feeding rates support the conclusion that Coleps can use dead organic matter as an additional food source.  相似文献   
5.
Metallogenic provinces in Europe range in age from the Archaean to the Neogene. Deposit types include porphyry copper and epithermal Cu–Au, volcanic-hosted massive sulphide (VMS), orogenic gold, Fe-oxide–Cu–Au, anorthosite Fe–Ti-oxide and sediment-hosted base-metal deposits. Most of them formed during short-lived magmatic events in a wide range of tectonic settings; many can be related to specific tectonic processes such as subduction, hinge retreat, accretion of island arcs, continental collision, lithosphere delamination or slab tear. In contrast, most sediment-hosted deposits in Europe evolved in extensional, continental settings over significant periods of time. In Europe, as elsewhere, ore formation is an integral part of the geodynamic evolution of the Earth's crust and mantle. Many tectonic settings create conditions conducive to the generation of water-rich magma, but the generation of ore deposits appears to be restricted to locations and short periods of change in temperature and stress, imposed by transitory plate motions. Crustal influence is evident in the strong structural controls on the location and morphology of many ore deposits in Europe. Crustal-scale fault–fracture systems, many involving strike-slip elements, have provided the fabric for major plumbing systems. Rapid uplift, as in metamorphic core complexes, and hydraulic fracturing can generate or focus magmatic–hydrothermal fluid flow that may be active for time spans significantly less than a million years. Once a hydrologically stable flow is established, ore formation is strongly dependent on the steep temperature and pressure gradients experienced by the fluid, particularly within the upper crust. In Europe, significant fracture porosity deep in the crystalline basement (1%) is not only important for magmatic–hydrothermal systems, but allows brines to circulate down through sedimentary basins and then episodically upward, expelled seismically to produce sediment-hosted base-metal deposits and Kupferschiefer copper deposits. Emerging research, stimulated by GEODE, can improve the predicting power of numerical simulations of ore-forming processes and help discover the presence of orebodies beneath barren overburden.  相似文献   
6.
Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar-39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/36Ar and 40Ar/36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems.In 40Ar-39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly precise dating technique. Our results also indicate the importance of thermally activated diffusion as a possible fractionation mechanism, e.g., for hydrothermal gas exhalations, or for carbonaceous carrier phases such as “Q” in meteorites that have been suggested as carriers of highly fractionated noble gas residues from the early solar nebula.  相似文献   
7.
Warning systems are increasingly applied to reduce damage caused by different magnitudes of rockslides and rockfalls. In an integrated risk-management approach, the optimal risk mitigation strategy is identified by comparing the achieved effectiveness and cost; estimating the reliability of the warning system is the basis for such considerations. Here, we calculate the reliability and effectiveness of the warning system installed in Preonzo prior to a major rockfall in May 2012. “Reliability” is defined as the ability of the warning system to forecast the hazard event and to prevent damage. To be cost-effective, the warning system should forecast an event with a limited number of false alarms to avoid unnecessary costs for intervention measures. The analysis shows that to be reliable, warning systems should be designed as fail-safe constructions. They should incorporate components with low failure probabilities, high redundancy, have low warning thresholds, and additional control systems. In addition, the experts operating the warning system should have limited risk tolerance. In an additional hypothetical probabilistic analysis, we investigate the effect of the risk attitude of the decision makers and of the number of sensors on the probability of detecting the event and initiating a timely evacuation, as well as on the related intervention cost. The analysis demonstrates that quantitative assessments can support the identification of optimal warning system designs and decision criteria.  相似文献   
8.
Komatiite lava flows in the Crixás greenstone belt, Goiás, Brazil, have textures and volcanic structures typical of Archean komatiites, but are geochemically most unusual. The flows are porphyritic and massive, or layered with spinifex upper parts and olivine cumulate lower parts. MgO contents range from 18 to 40%. In such lavas, only olivine (and minor chromite) can have crystallized, but neither major nor trace elements fall on olivine control lines. In MgO variation diagrams, CaO and Sr fall on lines with slopes steeper than olivine control lines; SiO2, FeO, Na2O, K2O and Y show little systematic variation; Zr shows a large variation that does not correlate with MgO; and Al2O3 decreases markedly with decreasing MgO. The aberrant behaviour is highlighted by the REE (rare earth elements) in spinifex and olivine cumulate layers from three flows: in the spinifex layers, chondrite-normalized REE patterns are hump-shaped with maxima at Nd or Sm ((La/Sm)N=0.6, (Gd/Yb)N=1.6–2.3), whereas cumulate zones in the same flows have steadily sloping patterns, with LREE enriched relative to HREE ((La/Sm)N=1.3, (Gd/Yb)N=1.4). Neither normal magmatic processes acting during emplacement of the komatiites, nor thermal erosion and wall-rock assimilation can explain these effects, and we speculate that elements commonly thought of as “immobile” (e.g. Al, Zr, REE) migrated during hydrothermal alteration or metamorphism. A Pb-Pb whole rock isochron gave an age of 2,728±140 Ma and selected Sm-Nd analyses an apparent isochron age of 2,825±98 Ma (ɛNd≈0). The Pb-Pb age is believed to be the approximate time of emplacement. Interpretation of the Sm-Nd data is complicated by the evidence of mobility of REE.  相似文献   
9.
The maximum potential temperature of the Archaean mantle is poorly known, and is best constrained by the MgO contents of komatiitic liquids, which are directly related to eruptive temperatures. However, most Archaean komatiites are significantly altered and it is difficult to assess the composition of the erupted liquid. Relatively fresh lavas from the SASKMAR suite, Belingwe Greenstone Belt, Zimbabwe (2.7 Ga) include chills of 25.6 wt.% MgO, and olivines ranging to Fo93.6, implying eruption at around 1520°C. A chill sample from Alexo Township, Ontario (also 2.7 Ga) is 28 wt.% MgO, and associated olivines range to Fo94.1, implying eruption at 1560°C. However, inferences of erupted liquids containing 32–33 wt.% MgO, from lavas in the Barberton Greenstone Belt, South Africa (3.45 Ga) and from the Perseverance Complex, Western Australia (2.7 Ga) may be challenged on the grounds that they contain excess (cumulate) olivine, or were enriched in Mg during alteration or metamorphism. Re-interpretation of olivine compositions from these rocks shows that they most likely contained a maximum of 29 wt.% MgO corresponding to an eruption temperature of 1580°C. This composition is the highest liquid MgO content of an erupted lava that can be supported with any confidence. The hottest modern magma, on Gorgona Island (0.155 Ga) contained 18–20% MgO and erupted at circa 1400°C.

If 1580°C is taken as the temperature of the most magnesian known eruption, then the source mantle from which the liquids rose would have been at up to 2200°C at pressures of 18 GPa corresponding to a mantle potential temperature of 1900°C. These temperatures are in excess of the mantle temperatures predicted by secular cooling models, and thus komatiites can only be formed in hot rising convective jets in the mantle. This result requires that Archaean mantle jets may have been 300°C hotter than the Archaean ambient mantle temperature. This temperature difference is similar to the 200–300°C temperature difference between present day jets and ambient mantle temperatures. An important subsidiary result of this study is the confirmation that spinifex rocks may be cumulates and do not necessarily represent liquid compositions.  相似文献   

10.
Preface     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号