首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   10篇
地质学   1篇
天文学   2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  1997年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有13条查询结果,搜索用时 203 毫秒
1.
Seismic behaviour of masonry buildings, built of low compressive strength units, is discussed. Although such materials have already been tested and approved for use from mechanical and thermal insulation point of view, the knowledge regarding their structural behaviour is still lacking. In order to investigate the resistance and deformation capacity of this particular type of masonry construction in seismic conditions, a series of eight walls and model of a two-storey full scale confined masonry building have been tested by subjecting the specimens to cyclic shear loads. All tests were conducted under a combination of constant vertical load and quasi static, cyclically imposed horizontal load. The behaviour of tested specimens was of typical shear type. Compared with the behaviour of plain masonry walls, the presence of tie-columns resulted into higher resistance and displacement capacity, as well as smaller lateral resistance degradation. The response of the model was determined by storey mechanism with predominant shear behaviour of the walls and failure mechanism of the same type as in the case of individual confined masonry walls. Adequate seismic behaviour of this particular masonry structural type can be expected under the condition that the buildings are built as confined masonry system with limited number of stories.  相似文献   
2.
The results of tests of plain and confined masonry walls with h/l ratio equal to 1·5, made at 1:5 scale, have been used to develop a rational method for modelling the seismic behaviour of confined masonry walls. A trilinear model of lateral resistance–displacement envelope curve has been proposed, where the resistance is calculated as a combination of the shear resistance of the plain masonry wall panel and dowel effect of the tie-columns’ reinforcement. Lateral stiffness, however, is modelled as a function of the initial effective stiffness and damage, occurring to the panel at characteristic limit states. Good correlation between the predicted and experimental envelopes has been obtained in the particular case studied. The method has been also verified for the case of prototype confined masonry walls with h/l ratio equal to 1·0. Good correlation between the predicted and experimental values of lateral resistance indicates the general validity of the proposed method. © 1997 John Wiley & Sons, Ltd.  相似文献   
3.
The basic aspects of testing small-scale masonry building models on simple earthquake simulators are discussed. Since the scale effects represent a difficult problem to solve, the overall seismic behaviour of structural systems, and not the behaviour of structulal details, has been studied by testing the reduced-sized models on a simple earthquake simulator. Accurate results regarding the dynamic behaviour and failure mechanism of the tested structures have been obtained by means of testing the relatively simple, adequately designed small-scale masonry building models. A simple earthquake simulator capable of simulating the uni-directional earthquake ground motion has been developed to study the seismic behaviour of masonry building models. Although a multipurpose programmable actuator was used to drive the shaking table, the comparison of the dynamic characteristics of the generated shaking-table motion and the earthquake acceleration records used for the simulation of seismic loads showed an acceptable degree of correlation between the input and output seismic motion.  相似文献   
4.
Abstract– On April 9, 2009, at 3:00 CEST, a very bright fireball appeared over Carinthia and the Karavanke Mountains. The meteoroid entered the atmosphere at a very steep angle and disintegrated into a large number of objects. Two main objects were seen as separate fireballs up to an altitude of approximately 5 km, and witnesses reported loud explosions. Three stones were found with a total weight of approximately 3.611 kg. The measured activity of short‐lived cosmogenic radionuclides clearly indicates that two specimens result from a very recent meteorite fall. All cosmogenic radionuclide concentrations suggest a rather small preatmospheric radius of <20 cm; a nominal cosmic‐ray exposure age based on 21Ne is approximately 4 Ma, but the noble gas and radionuclide results in combination indicate a complex irradiation. Jesenice is a highly recrystallized rock with only a few relic chondrules visible in hand specimen and thin section. The texture, the large grain size of plagioclase, and the homogeneous compositions of olivines and pyroxenes clearly indicate that Jesenice is a L6 chondrite. The bulk composition of Jesenice is very close to the published average element concentration for L ordinary chondrites. The chondrite is weakly shocked (S3) as indicated by the undulatory extinction in olivine and plagioclase and the presence of planar fractures in olivine. Being weakly shocked and with gas retention ages of >1.7 Ga (4He) and approximately 4.3 Ga (40Ar), Jesenice seems not to have been strongly affected by the catastrophic disruption of the L‐chondrite parent body approximately 500 Ma ago.  相似文献   
5.
6.
The cyclic behaviour of slender cantilever columns in full-scale models of precast industrial buildings, designed by Eurocode 8, was studied experimentally and analytically. The shear span ratio of the columns was 12.5, which is more than allowed by Eurocode 8 for columns in frame structures (10). High deformability and a large deformation capacity (8%~drift) of the columns was observed. A lumped plasticity model was used in the analysis. In the paper the observed behaviour of the models has been compared with the predicted behaviour obtained by several empirically based models and procedures. It was observed that these models, which were developed for much lower shear span ratios (2–6), were not applicable for the analyzed very slender columns without appropriate additional considerations and modifications. In the case of such columns the yield drift is dominated by the flexural mode (it is practically proportional to the height of the column) and the ultimate drift under cyclic loading conditions is only slightly dependent on the shear span (indicating that the ratio of the equivalent length of the plastic hinge to the height of the column decreases with the increasing shear span). An appropriately modified lumped plasticity model incorporating in-cycle and repeated-cycle strength deterioration was chosen for future use in performance-based design and seismic risk studies.  相似文献   
7.
The dynamic behaviour of a four-storeyed masonry building model subjected to simulated earthquake loading has been investigated. The observations of damage propagation during shaking tests indicated the storey mechanism action of model building. Since the predominant effect of the first natural mode of vibrations has been also observed, the idea of simple mathematical modelling has been followed in the calculations. Two simple analytical models have been compared when evaluating the dynamic response of the model building: a four degrees of freedom shear system and an equivalent single degree of freedom system. Three hysteresis rules have been taken into account for modelling the non-linear behaviour of the model. Satisfactory correlation between the measured and calculated response has been obtained in most cases.  相似文献   
8.
The response of autoclaved aerated concrete confined masonry buildings to seismic ground motion has been studied. Three 1:4 scale models of residential buildings with the same distribution of walls in plan but different types of floors and number of stories have been tested on a uni-directional shaking table. Lightweight prefabricated slabs have been installed in the case of the three-storey model M1, whereas reinforced concrete slabs have been constructed in the case of three-storey model M2 and four-storey model M3. Model M1 was subjected to seismic excitation along the axis of symmetry, whereas models M2 and M3 were tested orthogonal to it. Typical storey mechanism, characterised by diagonal shear failure mode of walls in the ground floor in the direction of excitation has been observed in all cases. Taking into consideration the observed behaviour, a numerical model with concentrated masses and storey hysteretic rules has been used to simulate the observed behaviour. Storey resistance curves calculated by a push-over method and hysteretic rules, which take into account damage and energy based stiffness degradation hysteretic rules, have been used to model the non-linear behaviour of the structure. Good agreement between the experimentally observed and calculated non-linear behaviour has been obtained.  相似文献   
9.
The efficiency of improving the seismic resistance of old masonry buildings by means of seismic isolation and confining the structure with CFRP laminate strips has been investigated. Five models of a simple two-story brick masonry building with wooden floors without wall ties have been tested on the shaking table. The control model has been built directly on the foundation slab. The second model has been separated from it by a damp-proof course in the form of a PVC sheet placed in the bed-joint between the second and the third course, whereas the third model has been isolated by rubber isolators placed between the foundation slab and structural walls. Models four and five have been confined with CFRP laminate strips, simulating the wall ties placed horizontally and vertically at floor levels and corners of the building, respectively. One of the CFRP strengthened models has been placed on seismic isolators. Tests have shown that a simple PVC sheet damp-proof course cannot be considered as seismic isolator unless adequately designed. Tests have also shown that the isolators alone did not prevent the separation of the walls. However, both models confined with CFRP strips exhibited significantly improved seismic behavior. The models did not collapse even when subjected to significantly stronger shaking table motion than that resisted by the control model without wall ties.  相似文献   
10.
The results of shaking table tests of a series of 1:5 scale masonry building models have been used for the assessment of values of structural behavior factor q for masonry structures, seismic force reduction factors proposed for the calculation of design seismic loads by Eurocode 8, European standard for the design of structures for earthquake resistance. Six models have been tested, representing prototype buildings of two different structural configurations and built with two different types of masonry materials. The study indicated that the reduction of seismic forces for the design depends not only on the type of masonry construction system, but also on structural configuration and mechanical characteristics of masonry materials. It has been also shown that besides displacement and energy dissipation capacity, damage limitation requirement should be taken into account when evaluating the values of behavior factor. On the basis of analysis of experimental results a conclusion can be made, that the values at the upper limit of the proposed range of values of structural behavior factor q for unreinforced and confined masonry construction systems are adequate, if pushover methods are used and the calculated global ductility of the structure is compared with the displacement demand. In the case where elastic analysis methods are used and significant overstrength is expected, the proposed values are conservative. However, additional research and parametric studies are needed to propose the modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号