首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地质学   1篇
天文学   8篇
  2020年   1篇
  2009年   1篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
排序方式: 共有10条查询结果,搜索用时 265 毫秒
1
1.
Abstract— Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of C, except for IAB iron meteorites, where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of N in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe, Ni)4N) are present. Carbon and N distributions in taenite are well correlated unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. (1) These elements are enriched at the center of taenite (convex type). (2) They are enriched at the edge of taenite (concave type). (3) They are enriched near but some distance away from the edge of taenite (complex type). The first case (1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M-shape Ni concentration profile. The second case (2) seems to be best explained as diffusion controlled C and N distributions. In the third case (3), the interior of taenite has been transformed to the α phase (kamacite or martensite). Carbon and N were expelled from the α phase and enriched near the inner border of the remaining γ phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt% in some iron meteorites. Nitride (carlsbergite and roaldite) is present in meteorites with high N concentrations in taenite, which suggests that the nitride was formed due to supersaturation of the metallic phases with N. The same tendency is generally observed for C (i.e., high C concentrations in taenite correlate with the presence of carbide and/or graphite). Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of C transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass spectrometry.  相似文献   
2.
Abstract— Nitrogen and Ar in more than 20 primitive ordinary chondrites were studied by a stepped combustion method. Several N carriers that are characterized by N isotopic composition, N release pattern and trapped Ar release pattern are recognized in the primitive ordinary chondrites. Large fractions of anomalous N and associated Ar are removed by acid treatment in most cases. The N isotopic anomalies cannot be explained by known presolar grains (with a possible exception of graphite), and some of the N isotopic anomalies may be due to unknown presolar grains. There is no specific relationship between the type of N carriers contained in an ordinary chondrite and the chemical type (H, L, or LL) of the chondrite. It is likely that as a result of impacts, the carriers of isotopically anomalous N were mixed in various parent bodies as rock fragments rather than as individual fine particles. The presence of distinctive N isotopic anomalies in primitive meteorites indicates that the primitive solar nebula may have been heterogeneous either spatially or temporally.  相似文献   
3.
Cyclones with strong winds can make the Southern Ocean and the Antarctic a dangerous environment.Accurate weather forecasts are essential for safe shipping in the Southern Ocean and observational and logistical operations at Antarctic research stations.This study investigated the impact of additional radiosonde observations from Research Vessel"Shirase"over the Southern Ocean and Dome Fuji Station in Antarctica on reanalysis data and forecast experiments using an ensemble data assimilation system comprising the Atmospheric General Circulation Model for the Earth Simulator and the Local Ensemble Transform Kalman Filter Experimental Ensemble Reanalysis,version 2.A 63-member ensemble forecast experiment was conducted focusing on an unusually strong Antarctic cyclonic event.Reanalysis data with(observing system experiment)and without(control)additional radiosonde data were used as initial values.The observing system experiment correctly captured the central pressure of the cyclone,which led to the reliable prediction of the strong winds and moisture transport near the coast.Conversely,the control experiment predicted lower wind speeds because it failed to forecast the central pressure of the cyclone adequately.Differences were found in cyclone predictions of operational forecast systems with and without assimilation of radiosonde observations from Dome Fuji Station.  相似文献   
4.
Abstract— A new grouplet of primitive, metal‐rich chondrites, here called the CB (C, carbonaceous; B, bencubbinite) chondrites, has been recognized. It includes Bencubbin, Weatherford, Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627. Their mineral compositions, as well as their oxygen and nitrogen isotopic compositions, indicate that they are closely related to the CR and CH chondrites, all of which are members of the more inclusive CR clan. CB chondrites have much greater metal/silicate ratios than any other chondrite group, widely increasing the range of metal/silicate fractionation recorded in solar nebular processes. They also have the greatest moderately volatile lithophile element depletions of any chondritic materials. Metal has compositional trends and zoning patterns that suggest a primitive condensation origin, in contrast with metal from other chondrite groups. CB chondrites, as well as other CR clan chondrites, have much heavier nitrogen (higher 15N/14N) than that in other chondrite groups. The primitive characteristics of the CB chondrites suggest that they contain one of the best records of early nebular processes. Another chondrite, Grosvenor Mountains 95551, is petrographically similar to the CB chondrites, but its mineral and oxygen and nitrogen isotope compositions indicate that it formed from a different nebular reservoir.  相似文献   
5.
Abstract— Minor element (Ca, Cr, and Mn) concentrations in amoeboid olivine aggregates (AOAs) from primitive chondrites were measured and compared with those predicted by equilibrium condensation in the solar nebula. CaO concentrations in forsterite are low, particularly in porous aggregates. A plausible explanation appears that an equilibrium Ca activity was not maintained during the olivine condensation. CaO and MnO in forsterite are negatively correlated, with CaO being higher in compact aggregates. This suggests that the compact aggregates formed either by a prolonged reheating of the porous aggregates or by condensation and aggregation of forsterite during a very slow cooling in the nebula.  相似文献   
6.
Abstract— Scanning electron microscopy and secondary ion mass spectrometry of the unequilibrated CH chondrite Pecora Escarpment (PCA) 91467 revealed four carriers of isotopically heavy N: (1) aggregates of carbonaceous material and silicates, (2) iron‐nickel metal grains with fine Fe‐Cr sulfide inclusions, (3) Si‐rich Fe‐Ni metal associated with Fe‐sulfide and (4) hydrated areas in the matrix. N in carbon‐silicate aggregates is isotopically heavy (δ15N is as high as 2500%0), whereas the other elements are isotopically normal, suggesting interstellar origin of carbonaceous material in the aggregates. Based on isotopic and textural evidence, we suggest that the carriers (2) and (3) were formed by brief heating in the solar nebula, whereas the carrier (4) was formed in a parent‐body asteroid. The carbon‐silicate aggregates are likely to be related to interstellar graphite found in Murchison and may also be the source of heavy N in bencubbinites.  相似文献   
7.
Abstract— The behavior of H, C, N and their isotopes in a thermally evolving planetesimal was evaluated by numerical simulation. Transportation of heat and gas molecules, and the chemical equilibrium involving these elements, were simulated. Our modeled planetesimals initially contain homogeneous amounts of radioactive heat source (26Al); and H, C, and N in forms of organic materials, graphite, and in some models, water ice. Vaporized gas molecules were transported from the interior of the planetesimal to its surface, although their transportation efficiencies were quite different among the three elements, primarily due to differences in their affinities to metallic Fe. Significant portions of these elements were redistributed into metallic Fe when the planetesimal was heated at 600 °C and above. Nitrogen showed the most prominent siderophile characteristics, resulting in fairly large concentrations of N trapped in metallic Fe, which is consistent with observations by Hashizume and Sugiura (1997). Efficiency of C transportation crucially depended on O fugacity. To realize effective C transportation, it was necessary to assume an oxidizing condition (log fO2 > log fO2,(FiF) + 1) in the initially accreted material. Water vapor, generated at the interior of the planetesimal and transported to its near surface, formed a water-rich layer under certain conditions, providing an environment sufficient for aqueous alteration of chondritic materials to occur. Variations in isotopic ratios of N in taenite observed among equilibrated ordinary chondrites can be explained by our gas transportation model. It is required, however, that carriers of isotopically anomalous N, perhaps presolar grains, were initially localized on a large spatial scale within a single planetesimal, which possibly suggests incorporation of preaccretionary objects as large as 0.1 × of the final mass of the ordinary chondrite parent body.  相似文献   
8.
Abstract— ‐Nitrogen‐isotopic compositions of the bencubbinites—Bencubbin, Hammadah al Hamra (HH) 237, and Queen Alexandra Range (QUE) 94411—and in a petrographically similar chondrite Grosvenor Mountains (GRO) 95551 were measured by stepped‐combustion static mass spectrometry. Hammadah al Hamra 237 and QUE 94411 contain isotopically heavy N, but not as heavy as that in Bencubbin or Weatherford. Grosvenor Mountains 95551 contains isotopically near‐normal N and light N and, hence, it is not related to the bencubbinites, which is also indicated by its O‐isotopic composition. The N carriers in these meteorites were investigated using secondary ion mass spectrometry. In the bencubbinites, N is mostly located around sulfide in metal clasts and in impact‐melt areas. The N carriers in the former are taenite, carbide, or both; whereas those in the latter are molten metal, tiny graphitic carbon in metal, oxi‐nitride glass, or both. In the various N carriers, N is isotopically equilibrated, and therefore the carriers are not pristine presolar grains. Isotopically near‐normal N in GRO 95551 is located in graphite. The carrier of isotopically light N in GRO 95551 has not been found.  相似文献   
9.
Abstract— The (compositionally) closely related iron meteorite groups IIIE and IIIAB were originally separated based on differences in kamacite bandwidth, the presence of carbides only in the IIIE group, and marginally resolvable differences on the Ga‐Ni and Ge‐Ni diagrams. A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C‐isotopic composition and nitride occurrence. Cosmic‐ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N‐isotopic range among the IIIE iron meteorites. A negative correlation between δ15N and N concentration suggests that the increase in s?15N resulted from diffusional loss of N.  相似文献   
10.
We conducted a systematic study of oxide minerals in LL3.0-6 chondrites, and found ilmenite, rutile, perovskite and an unknown Al-Ti-Zr-oxide. Ilmenite is low in abundance, but is present in the chondrules and matrix of all the samples that we studied. The MnO content of ilmenite in LL3.0-3.3 is lower than that in LL3.5-6. The low concentration of MnO in the former is due to crystallization from chondrules melts at high temperatures. On the other hand, ilmenite composition in LL3.5-6 reflects thermal metamorphism. Therefore, ilmenite is indicative of petrologic type. We also made the first measurements of the 53Mn-53Cr systematics of ilmenite in ordinary chondrites. The age for ilmenite in Y790256 (LL6) is determined to be about 2 Ma older than angrites. This may represent the metamorphic age of the LL chondrites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号