首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
地球物理   35篇
地质学   7篇
海洋学   1篇
天文学   20篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
A new series of yearly-mean relative sunspot numbers SN 2 that has been extrapolated into the past (to 1610) is presented. The Kislovodsk series with the scale factor b = 1.0094 ± 0.0059 represents a reasonable continuation of the mean-monthly and mean-yearly total sunspot areas of the Greenwich series after 1976. The second maximum of the 24th solar-activity cycle was not anomalously low, and was no lower than 6 of the past 13 cycles. A series A 2 of values for the total sunspot area in 1610–2015 has been constructed, and is complementary to new versions of the series of the relative number of sunspots SN 2 and the number of sunspot groups GN 2. When needed, this series can be reduced to yield a quantity having a clear physical meaning—the spot absolute magnetic flux Φ Σ(t)[Mx] = 2.16 × 1019 A(t) [mvh]. The maximum sunspot area during the Maunder minimum is much higher in the new series compared to the previous version. This at least partially supports the validity of arguments that cast doubt on the anomalously low ampltude of the solar cycles during the Maunder minimum that has been assumed by many researchers earlier.  相似文献   
2.
We offer an interpretation of the now widely discussed protracted onset of the epoch of solar activity minimum after cycle 23. The interpretation appeals to the Gnevyshev-Ohl rule, but in the context of a new statistical quantity-the product of the cycle amplitude by its duration. Considering this quantity, which has the same physical meaning as that of the integrated characteristic used by Gnevyshev and Ohl, yields a probable estimate for the onset of the minimum of the current cycle in the interval 2009.0–2012.4.  相似文献   
3.
We have obtained new consistent versions of the 400-yr time series of the Wolf sunspot number W, the sunspot group number G, and the total sunspot area S (or the total sunspot magnetic flux Φ). We show that the 11-yr cycle did not cease during the Maunder minimum of solar activity. The characteristics of the extrema of individual 11-yr cycles in 1600–2005 have been determined in terms of the total sunspot area index. We provide arguments for using alternating (“magnetic”) time series of indices in investigating the solar cyclicity.  相似文献   
4.
We obtained three-dimensional interpolated portraits for the radial and torsional oscillations of fragments of 12 sunspots in the form of deviations of their polar coordinates from drift as functions of the time and distance from the sunspot center. We performed a wavelet analysis of the two orthogonal components and determined the dominant oscillation modes; the period varies between 40 and 100 min for different sunspots. We revealed two types of dominant modes, one is associated with the sunspot and the other is associated with its surrounding pores: the central-mode frequency depends on the maximum field strength of the sunspot and decreases from its center toward the boundary, while the peripheral-mode frequency depends on the heliographic latitude and decreases toward the sunspot boundary from the far periphery. We revealed radial variations in frequency and amplitude with a spatial period of 0.8 sunspot radius. The types of dominant modes and the radial variations in oscillation parameters are linked with the subphotospheric structure of an active region—with two types of spiral waves and concentric magnetic-field waves. We estimated the mean pore oscillation energy to be ~1030 erg and found a singular oscillator with a mean energy of ~1031 erg in the penumbra at a distance of 0.8 sunspot radius. We argue that the singular penumbra oscillator is the source of solar flares.  相似文献   
5.
Ogurtsov  M.G.  Jungner  H.  Kocharov  G.E.  Lindholm  M.  Eronen  M.  Nagovitsyn  Yu.A. 《Solar physics》2003,218(1-2):345-357
Bidecadal fluctuations in terrestrial climate were analyzed. It was shown that this variability might arise if Earth's climate reacts to galactic cosmic-ray intensity, integrated over its full quasi-11-year cycle. It was further shown that this integral effect should also lead to an effective link between climate and the duration of the quasi-11-year cycle in cosmic ray flux. That, in turn, must result in appearance of some connection between climate and the length of the solar cycle, which is currently a topic of active debate. Analyses of temperature proxies, obtained for northern Fennoscandia, confirmed the connection of the climate in this region and the length of the cycle in galactic cosmic-ray intensity. Decadal and bidecadal variability of integrated cosmic-ray flux was quantitatively estimated.  相似文献   
6.
We report the results of the application of our approach to study the behavior of solar activity in the past, where:
  • When reconstructing the variations of solar activity, geomagnetic parameters, and the interplanetary magnetic field in the past we select a sequence of increasing time scales, which can be naturally represented by the potentials of available observational data. We select a total of four time scales: 150–200 years, 400 years, 1000 years, and 10000 years.
  • When constructing the series of each successive (in terms of length) time scale we use the data of the previous time scale as reference data.
  • We abandon, where possible, the series of traditional statistical parameters in favor of the series of physical parameters.
  • When deriving the relations between any parameters of solar activity, geomagnetic disturbance, and the interplanetary magnetic field, we take into account the differential nature of relations on different time scales. To this end, we use the earlier proposed MSR and DPS methods.
  • To verify the resulting reconstructions, we use the “principle of witnesses”, which uses independent (in some cases, indirect) information as initial data.
  •   相似文献   
    7.
    Geomagnetism and Aeronomy - The results of the reconstruction of Wolf numbers from the 11th century until the middle of the 19th century A.D. based on radiocarbon data are presented. This time span...  相似文献   
    8.
    Geomagnetism and Aeronomy - Carbon isotope 14С is produced in the Earth’s atmosphere by energetic cosmic-ray (CR) particles. The data on its atmospheric abundance are used to...  相似文献   
    9.
    Data on variations in the content of the 14C cosmogenic isotope in tree rings and the Earth’s atmosphere (Δ14C) make it possible to study the behavior of solar activity (SA) in previous centuries and millenniums. The latter is related to the fact that SA temporal variations result in a change in the IMF (Interplanetary Magnetic Field) parameters and, as a consequence, in the galactic cosmic ray (GCR) flux, under the action of which the 14C isotope is produced in the Earth’s atmosphere. This makes it possible to study SA history based on data on the 14C isotope content in tree rings. However, in this case we have several difficulties related to climate change. Climate changes result in carbon redistribution between natural reservoirs, which is reflected in radiocarbon data and results in solar signal distortion. The effect of variations in the global temperature and carbon dioxide concentration on the reconstruction of the heliospheric modulation potential and Wolf numbers from the late 14th century to the early 19th century is considered. It has been shown that the radiocarbon data do not make it possible to conclude that SA during the Maunder minimum was extremely low as compared to SA during the Dalton minimum.  相似文献   
    10.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号