首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
天文学   7篇
  2020年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 406 毫秒
1
1.
2.
Using differential emission measure tomography (DEMT) based on time series of EUV images, we carry out a quantitative comparative analysis of the three-dimensional (3D) structure of the electron density and temperature of the inner corona (\(r<1.25\,\mathrm{R}_{\odot}\)) between two specific rotations selected from the last two solar minima, namely Carrington Rotations (CR)1915 and CR-2081. The analysis places error bars on the results because of the systematic uncertainty of the sources. While the results for CR-2081 are characterized by a remarkable north–south symmetry, the southern hemisphere for CR-1915 exhibits higher densities and temperatures than the northern hemisphere. The core region of the streamer belt in both rotations is found to be populated by structures whose temperature decreases with height (called “down loops” in our previous articles). They are characterized by plasma \(\beta\gtrsim1\), and may be the result of the efficient dissipation of Alfvén waves at low coronal heights. The comparative analysis reveals that the low latitudes of the equatorial streamer belt of CR-1915 exhibit higher densities than for CR-2081. This cannot be explained by the systematic uncertainties. In addition, the southern hemisphere of the streamer belt of CR-1915 is characterized by higher temperatures and density scale heights than for CR-2081. On the other hand, the coronal hole region of CR-1915 shows lower temperatures than for CR-2081. The reported differences are in the range \({\approx}\,10\,\mbox{--}\,25\%\), depending on the specific physical quantity and region that is compared, as fully detailed in the analysis. For other regions and/or physical quantities, the uncertainties do not allow assessing the thermodynamical differences between the two rotations. Future investigation will involve a DEMT analysis of other Carrington rotations selected from both epochs, and also a comparison of their tomographic reconstructions with magnetohydrodynamical simulations of the inner corona.  相似文献   
3.
Recent studies show that active-region (AR) upflowing plasma, observed by the EUV-Imaging Spectrometer (EIS) onboard Hinode, can gain access to open-field lines and be released into the solar wind (SW) via magnetic-interchange reconnection at magnetic null-points in pseudo-streamer configurations. When only one bipolar AR is present on the Sun and is fully covered by the separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely that the upflowing AR plasma can find its way into the slow SW. However, signatures of plasma with AR composition have been found at 1 AU by Culhane et al. (Solar Phys. 289, 3799, 2014) that apparently originated west of AR 10978. We present a detailed topology analysis of AR 10978 and the surrounding large-scale corona based on a potential-field source-surface (PFSS) model. Our study shows that it is possible for the AR plasma to move around the streamer separatrix and be released into the SW via magnetic reconnection, which occurs in at least two main steps. We analyse data from the Nançay Radioheliograph (NRH) in a search for evidence of the chain of magnetic reconnections that we propose. We find a noise storm above the AR and several varying sources at 150.9 MHz. Their locations suggest that they might be associated with particles accelerated during the first-step reconnection process at a null point well outside of the AR. We find no evidence of the second reconnection step in the radio data, however. Our results demonstrate that even when it appears highly improbable for the AR plasma to reach the SW, indirect channels involving a sequence of reconnections can make it possible.  相似文献   
4.
The Sutter's Mill meteorite fell in northern California on April 22, 2012. Several fragments of the meteorite were recovered, some of them shortly after the fall, others several days later after a heavy rainstorm. In this work, we analyzed several samples of four fragments―SM2, SM12, SM20, and SM30―from the Sutter's Mill meteorite with two infrared (IR) microscopes operating in the 4000–650 cm?1 (2.5–15.4 μm) range. Spectra show absorption features associated with minerals such as olivines, phyllosilicates, carbonates, and possibly pyroxenes, as well as organics. Spectra of specific minerals vary from one particle to another within a given stone, and even within a single particle, indicating a nonuniform mineral composition. Infrared features associated with aliphatic CH2 and CH3 groups associated with organics are also seen in several spectra. However, the presence of organics in the samples studied is not clear because these features overlap with carbonate overtone bands. Finally, other samples collected within days after the rainstorm show evidence for bacterial terrestrial contamination, which indicates how quickly meteorites can be contaminated on such small scales.  相似文献   
5.
We carry out an analysis of the mass that is evacuated from three coronal dimming regions observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The three events are unambiguously identified with white-light coronal mass ejections (CMEs) that are associated in turn with surface activity of diverse nature: an impulsive (M-class) flare, a weak (B-class) flare, and a filament eruption without a flare. The use of three AIA coronal passbands allows applying a differential emission measure technique to define the dimming regions and identify their evacuated mass through the analysis of the electronic density depletion associated with the eruptions. The temporal evolution of the mass loss from the three dimmings can be approximated by an exponential equation followed by a linear fit. We determine the mass of the associated CMEs from COR2 data. The results show that the evacuated masses from the low corona represent a considerable amount of the CME mass. We also find that plasma is still being evacuated from the low corona at the time when the CMEs reach the COR2 field of view. The temporal evolution of the angular width of the CMEs, of the dimming regions in the low corona, and of the flux registered by GOES in soft X-rays are all in close relation with the behavior of mass evacuation from the low corona. We discuss the implications of our findings toward a better understanding of the temporal evolution of several parameters associated with the analyzed dimmings and CMEs.  相似文献   
6.
Organic nanoglobules are microscopic spherical carbon‐rich objects present in chondritic meteorites and other astromaterials. We performed a survey of the morphology, organic functional chemistry, and isotopic composition of 184 nanoglobules in insoluble organic matter (IOM) residues from seven primitive carbonaceous chondrites. Hollow and solid nanoglobules occur in each IOM residue, as well as globules with unusual shapes and structures. Most nanoglobules have an organic functional chemistry similar to, but slightly more carboxyl‐rich than, the surrounding IOM, while a subset of nanoglobules have a distinct, highly aromatic functionality. The range of nanoglobule N isotopic compositions was similar to that of nonglobular 15N‐rich hotspots in each IOM residue, but nanoglobules account for only about one third of the total 15N‐rich hotspots in each sample. Furthermore, many nanoglobules in each residue contained no 15N enrichment above that of bulk IOM. No morphological indicators were found to robustly distinguish the highly aromatic nanoglobules from those that have a more IOM‐like functional chemistry, or to distinguish 15N‐rich nanoglobules from those that are isotopically normal. The relative abundance of aromatic nanoglobules was lower, and nanoglobule diameters were greater, in more altered meteorites, suggesting the creation/modification of IOM‐like nanoglobules during parent‐body processing. However, 15N‐rich nanoglobules, including many with highly aromatic functional chemistry, likely reflect preaccretionary isotopic fractionation in cold molecular cloud or protostellar environments. These data indicate that no single formation mechanism can explain all of the observed characteristics of nanoglobules, and their properties are likely a result of multiple processes occurring in a variety of environments.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号