首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   1篇
海洋学   3篇
天文学   20篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  1993年   2篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有26条查询结果,搜索用时 46 毫秒
1.
We survey here the observational results on five gradual and four impulsive type events from the hard X-ray imaging (SXT) and spectrometer (HXM) instruments on the Hinotori satellite. A set of differences are clearly recognized between the gradual and impulsive type bursts. These are: (1) Hard X-ray images show the existence of a large coronal source for each gradual burst and a wide variety of source structures for impulsive bursts. (2) The source heights of the impulsive bursts appear to be low. (3) All gradual bursts show power-law spectra while impulsive bursts show exponential thermal spectra at least before the maximum phase. (4) Energy-dependent peak delays are observed only in gradual bursts. From these differences we suggest that two different acceleration and emission mechanisms are involved with these two kinds of hard X-ray bursts.  相似文献   
2.
Hot regions in solar flares produce X-radiation and microwaves by thermal processes. Recent X-ray data make it possible to specify the temperature and emission measure of the soft X-ray source, by using, for instance, a combination of the 1–8 Å (peak response at about 2 keV) and the 0.5–3 Å (peak response at about 5 keV) broad-band photometers. The temperatures and emission measures thus derived satisfactorily explain the radio fluxes, within systematic errors of about a factor of 3. Comparison of 15 events with differing parameters shows that a hot solar flare region has an approximately isothermal temperature distribution. The time evolution of the correlation in a single event shows that the hot material originates in the chromosphere, rather than the corona. The density must lie between 1010 and 2 × 1011 cm–3. For an Importance 1 flare, this implies a stored energy of roughly 2 x 1030-1029 ergs. A refinement of the data will enable us to choose between conductive and radiative cooling models.  相似文献   
3.
Time variations of the hard X-ray spectrum in solar flares are observed by the hard X-ray spectrometer (HXM) aboard the Hinotori satellite. With a new presentation of the dynamic spectrum we have studied the differences between impulsive and gradual hard X-ray bursts. In the impulsive events a “bent” spectrum up to some hundred keV persists at least until the main peak. In the gradual events, on the other hand, a power-law spectrum augmented by a low-energy excess is dominant.  相似文献   
4.
K. Ohki 《Solar physics》1975,45(2):435-452
Interferometric radio observations together with soft X-ray observations are presented here to show that during the growth phase of soft X-ray flares, a large mass increase occurs simultaneously with the creation of an X-ray hot region in the corona. The lack of an increase of radio flux from pre-flare active regions absolutely excludes the possibility of the coronal accumulation of low-temperature matter just prior to flare onset. Therefore we suggest a hypothesis that a large amount of hot matter, which contains almost the entire energy in the flare, is supplied from the chromosphere into the corona during each flare. Since even small flares produce coronal hot regions radiating thermal soft X-rays and microwaves, the formation of the hot region may be a basic process in most flares. Energy, created by some instability in the corona, travels by thermal conduction to the chromosphere where the dense matter is heated and subsequently expands into the corona, producing the observed hot region. Impulsive heating of the chromosphere by nonthermal electrons which simultaneously emit hard X-rays is not sufficient to be the energy source in our model. Slower heating, which supplies the flare more energy than that supplied in the impulsive phase, is required. If the temperature of the energy source in the corona exceeds 2 × 107 K, the conductive energy flux becomes sufficient to exceed the radiation loss from the chromosphere-corona transition region. This excess energy may cause the chromospheric gas expansion.  相似文献   
5.
The SOLAR-A spacecraft has spectroscopic capabilities in a wide energy band from soft X-rays to gamma-rays. The Wide Band Spectrometer (WBS), consisting of three kinds of spectrometers, soft X-ray spectrometer (SXS), hard X-ray spectrometer (HXS) and gamma-ray spectrometer (GRS), is installed on SOLAR-A to investigate plasma heating, high-energy particle acceleration, and interaction processes. SXS has two proportional counters and each counter provides 128-channel pulse height data in the 2–30 keV range every 2 s and 2-channel pulse count data every 0.25 s. HXS has a NaI scintillation detector and provides 32-channel pulse height data in the 20–400 keV range every 1 s and 2-channel pulse count data every 0.125 s. GRS has two identical BGO scintillation detectors and each detector provides 128-channel pulse height data in the 0.2–10 MeV range every 4 s and 4-channel pulse count data (0.2–0.7, 0.7–4, 4–7, and 7–10 MeV) every 0.25–0.5 s. In addition, each of the BGO scintillation detectors provides 16-channel pulse height data in the 8–100 MeV range every 4 s and 2-channel pulse count data (8–30 and 30–100 MeV) every 0.5 s. The SXS observations enable one to study the thermal evolution of flare plasma by obtaining time series of electron temperatures and emission measures of hot plasma; the HXS observations enable one to study the electron acceleration and heating mechanisms by obtaining time series of the electron spectrum; and the GRS observations enable one to study the high-energy electron and ion acceleration and interaction processes by obtaining time series of electron and ion spectra.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   
6.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   
7.
Abstract Recent advanced chronological studies for the Tertiary volcanic rocks from the Northeast (NE) Japan arc revealed three volcanic fronts which differed in temporal and spatial distribution. These fronts were (i) the Matsumae-Shizukuishi-Shiogama line of 22–25 Ma which is obliquely across the Quaternary volcanic front (QVF); (ii) the Tomari-Shiogama line of 13–16 Ma which exists 30–50 km east of the QVF and (iii) a line of 0–8 Ma which is the same as the QVF. The first shifting of the 22–25 Ma line to the 13–16 Ma one was due to the counterclockwise rotation of the NE Japan arc during 20–12 Ma as proposed by Otofuji et al . (1985), and the second shifting of the 13–16 Ma line to the 0–8 Ma line could have contributed to a decrease in the dip of the slab of the Pacific plate which subducted beneath the NE Japan arc during 13–8 Ma.  相似文献   
8.
Ohki  K. 《Solar physics》2003,213(1):111-120
A prompt increase of solar protons shortly after a flare has been thought to originate in the flare itself. We give new evidence for the shock-wave acceleration of these prompt protons that is called `solar component' in a gradual-type event. In this study, a recompiled data set of gradual particle events is evaluated, in order to test proportionality between the numbers of interplanetary protons and -ray fluencies of the parent flares. The result does show some proportionality only in western-hemisphere events despite a small sample of events. For eastern hemisphere events, on the other hand, no prompt protons are observed in spite of large prompt relativistic-electron fluxes. It is suggested from these observational facts that prompt protons in gradual events originate in shock waves driven by CMEs very close to the Sun and that the flare-origin hypothesis seems implausible.  相似文献   
9.
Dimethylsulfide (DMS) in surface seawater and the air, methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2–) in aerosol, and radon-222 (Rn-222) were measured in the northern North Pacific, including the Bering Sea, during summer (13 July – 6 September 1997). The mean atmospheric DMS concentrations in the eastern region (21.0 ± 5.8 nmole/m3 (mean ± S.D.), n=30) and Bering Sea (19.9 ± 9.8 nmole/m3, n=10) were higher than that in the western region (11.1 ± 6.4 nmole/m3, n=31) (p<0.05), although these regions did not significantly differ in the mean DMS concentration in surface seawater. Mean sea-to-air DMS flux in the eastern region (21.0 ± 10.4 mole/m2/day, n=19) was larger than those in the western region (11.3 ± 16.9 mole /m2/day, n=22) and Bering Sea (11.2 ± 7.8 mole/m2/day, n=7) (p<0.05). This suggests that the longitudinal difference in atmospheric DMS was produced by that in DMS flux owing to wind speed, while the possible causes of the higher DMS concentrations in the Bering Sea include (1) later DMS oxidation rates, (2) lower heights of the marine boundary layer, and (3) more inactive convection. The mean MSA concentrations in the eastern region (1.18 ± 0.84 nmole/m3, n=35) and Bering Sea (1.17 ± 0.87 nmole/m3, n=13) were higher than that in the western region (0.49 ± 0.25 nmole/m3, n=28) (p < 0.05). Thus the distribution of MSA was similar to that of DMS, while the nss-SO4 2– concentrations were higher near the continent. This suggests that nss-SO4 2– concentrations were regionally influenced by anthropogenic sulfur input, because the distribution of nss-SO4 2– was similar to that of Rn-222 used as a tracer of continental air masses.  相似文献   
10.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号