首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
天文学   17篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2006年   1篇
  2003年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The evolution of the periodic orbits around the collinear equilibrium positions, belonging to the Strömgren families a, b and c, with the radiation pressure parameter of the more massive body is studied in the Sun-Jupiter system. These families are determined for a single value of the radiation pressure parameter and particularly when the radiation force of the more massive body is equal to one half of the gravitational attraction. Then the critical stability orbits of each family are transferred with the radiation parameter. The stability of each periodic solution is also studied.  相似文献   
2.
The regions of quasi-periodic motion around non-symmetric periodic orbits in the vicinity of the triangular equilibrium points are studied numerically. First, for a value of the mass parameter less than Routh's critical value, the stability regions determined by quasi-periodic motion are examined around the existing families of short (Ls 4) and long (Ll 4) period solutions. Then, for two values of μ greater than the Routh value, the unified family Lsl 4, to which, in these cases, Ls 4 and Ll 4 merge, is considered. It is found that such regions surround in general the linearly stable segments of the corresponding families and become smaller as the mass ratio increases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
We study the motion of a secondary celestial body under the influence of the logarithmic corrected gravitational force of a primary one. This kind of correction was introduced by Fabris and Campos (Gen. Relativ. Gravit. 41(1):93, 2009). We derive two equations to compute the rate of change of the anomalistic period with respect to the eccentric anomaly and its total variation over one revolution. In a kinematical sense, this influence produces an apsidal motion. We perform numerical estimations for some celestial bodies. We also compare our results to those obtained by considering a Yukawa correction.  相似文献   
4.
The techniques used for the numerical computation of families of periodic orbits of dynamical systems rely on predictor-corrector algorithms. These algorithms usually depend on the solution of systems of approximate equations constructed from the periodicity conditions of these orbits. In this contribution we transform the root finding procedure to an optimization one which is applied on an objective function based on the exact periodicity conditions. Thus, the determination of periodic solutions and families of such orbits can be accomplished through unconstrained optimization. In this paper we apply and compare some well-known minimization methods for the solution of this problem. The obtained results are promising. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
6.
The procedure of numerical ascent from families of planar to three-dimensional periodic orbits and the subsequent descent to the plane is proved efficient in determining new families of planar asymmetric periodic orbits in the restricted three-body problem. Two such families are computed and described for values of the mass parameter for which it has been found that they exist. Two new families of three-dimensional asymmetric periodic orbits are also presented in this paper.  相似文献   
7.
There has been a renewed interest in the recent years in the possibility of deviations from the predictions of Newton’s “inverse-square law” of universal gravitation. One of the reasons for renewing this interest lies in various theoretical attempts to construct a unified elementary particle theory, in which there is a natural prediction of new forces over macroscopic distances. Therefore the existence of such a force would only coexist with gravity, and in principle could only be detected as a deviation from the inverse square law, or in the “universality of free fall” experiments. New experimental techniques such that of Sagnac interferometry can help explore the range of the Yukawa correction λ≥1014 m where such forces might be present. It may be, that future space missions might be operating in this range which has been unexplored for very long time. To study the effect of the Yukawa correction to the gravitational potential and its corresponding signal delay in the vicinity of the Sun, we use a spherically symmetric modified space time metric where the Yukawa correction its added to the gravitational potential. Next, the Yukawa correction contribution to the signal delay is evaluated. In the case where the distance of closest approach is much less than the range λ, it results to a signal time delay that satisfies the relation t(b<λ)≅37.7t(b=λ).  相似文献   
8.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   
9.
In this paper we examine the recently introduced Dvali-Gabadadze-Porrati (DGP) gravity model. We use a space-time metric in which the local gravitation source dominates the metric over the contributions from the cosmological flow. Anticipating ideal possible solar system effects, we derive expressions for the signal time delays in the vicinity of the Sun. and for various ranges of the angle θ of the signal approach, The time contribution due to DGP correction to the metric is found to be proportional to b 3/2/c 2 r 0. For r 0 equal to 5 Mpc and θ in the range [−π/3,π/3], Δt is equal to 0.0001233 ps. This delay is extremely small to be measured by today’s technology but it could be probably measurable by future experiments.  相似文献   
10.
The regions of stability for the out of plane equilibrium points of the photogravitational restricted three-body problem are given. Second order expansions of periodic solutions around these points are constructed and the corresponding families are computed. It is found that two such families exist. One of them originates and terminates on the same equilibrium point while the other terminates by flattening on the orbital plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号