首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   3篇
天文学   20篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
  1997年   2篇
  1995年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1975年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
This paper is devoted to Force-Free Electromagnetic Oscillations in a constant magnetic field. A correction is made in the derivation of the basic equation. The paper confirms the predicted spectrum of frequencies, namely n = o (n + 1)1/2;n = 0, 1, 2, .... In addition it is suggested that hybrid frequency n = ( n 2 + H 2 )1/2 should be found in observational data.  相似文献   
2.
A nonpolytropic model of a polar coronal hole at 2 R R 5 R is constructed. Our main assumptions are: (1) the magnetic structure of the Sun can be described by a combination of dipole-like and radial fields; (2) in the magnetically dominated region [(v 2/2) < (B 2/8)] the influence of the outflow on the magnetic structure is negligible. The magnetic and thermodynamic structures are obtained by solving the force balance equation for plasma with the observationally derived electron density. Profiles of velocities in the acceleration regime are presented and the influence of the outflow on the thermodynamic structure of the solar corona above the polar region is discussed.This paper is the first part of a joint project of the Space Environment Laboratory, the Joint Institute for Laboratory Astrophysics, and the High Altitude Observatory, NCAR. The second paper by Munro and Tzur is in preparation.Work done while at the Space Environment Laboratory, NOAA, ERL, Boulder, CO 80303, U.S.A.1982–83 Visiting Fellow at the Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of Colorado.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Visitor at NCAR.  相似文献   
3.
The structure of a stationary sunspot of circular shape is considered. Schluter-Temesvary theory, based on the similarity assumption is criticized. It is shown that this theory does not describe the observed inclination of magnetic field lines in a sunspot. A new assumption is proposed taking into account field lines which return to the photosphere. On the basis of this assumption, the main equation of the new theory is obtained and the results compare well with observations.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
4.
The magnetohydrodynamics of a compressible fluid with finite electrical conductivity in a gravitational field is treated analytically. For the case of one ignorable coordinate in cylindrical and Cartesian coordinates the problem is reduced to a scalar partial differential equation. The ideal gas equation of state is considered. For simplicity, the new equation is derived for a two-component motion. The application of this result to mass flow in sunspots is discussed.  相似文献   
5.
The time-dependent Force-Free Electromagnetic Field (FFEMF) is studied. In contrast to the case of Force-Free Magnetic Field (FFMF), it is shown that the FFEMF can occur in the form of waves. The FFEMF wave equation is solved in the case of one spatial dimension. Besides a periodical linear FFEMF wave solutions, the existence of solitary wave solutions is demonstrated. The possible application of FFEMF solutions to solar flares is discussed.Work done at the Space Environment Laboratory, NOAA/ERL/SEL, Boulder, CO 80303, U.S.A.  相似文献   
6.
The magnetohydrostatic equilibrium of a magnetic flux tube in a homogeneous gravitational and vertical magnetic field is studied. Gas pressure and density are presented explicitly as a function of the external magnetic field. The influence of the external magnetic field on the magnetic and thermodynamic structures is illustrated by two exact solutions. The possible applications to sunspot and facular modeling are discussed.Work done at the Space Environment Laboratory, NOAA/ERL, Boulder, CO 80303, U.S.A.  相似文献   
7.
We compare recent observations of a solar eruptive prominence as seen in extreme-UV light on 30 March 2010 by the Solar Dynamics Observatory (SDO) with the multi-tube model for interplanetary magnetic clouds (Osherovich, Fainberg, Stone, Geophys. Res. Lett. 26, 2597, 1999). Our model is based on an exact analytical solution of the plasma equilibrium with magnetic force balanced by a gradient of scalar gas pressure. Topologically, this solution describes two magnetic helices with opposite magnetic polarity embedded in a cylindrical magnetic flux tube that creates magnetic flux inequality between the two helices by enhancing one helix and suppressing the other. The magnetic field in this model is continuous everywhere and has a finite magnetic energy per unit length of the tube. These configurations have been introduced as MHD bounded states (Osherovich, Soln. Dannye 5, 70, 1975). Apparently, the SDO observations depict two non-equal magnetically interacting helices described by this analytical model. We consider magnetic and thermodynamic signatures of multiple magnetic flux ropes inside the same magnetic cloud, using in situ observations. The ratio of magnetic energy density to bulk speed solar wind energy density has been defined as a solar wind quasi-invariant (QI). We analyze the structure of the QI profile to probe the topology of the internal structure of magnetic clouds. From the superposition of 12 magnetically isolated clouds observed by Ulysses, we have found that the corresponding QI is consistent with our double helix model.  相似文献   
8.
We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the “separable” class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity crit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation is inversely proportional to the angular velocity of rotation ; the product being proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed. Finally, considering interplanetary magnetic clouds as cylindrical flux ropes, we inquire whether they rotate. We find that at 1 AU only a minority do. We discuss data on two magnetic clouds where we interpret the presence in each of vortical plasma motion about the symmetry axis as a sign of rotation. Our estimates for the angular velocities suggest that the parameters of the two magnetic clouds are below critical values. The two clouds differ in many respects (such as age, bulk flow speed, size, handedness of the magnetic field, etc.), and we find that their rotational parameters reflect some of these differences, particularly the difference in age. In both clouds, a rough estimate of the radial electric field in the rigidly rotating core, calculated in a non-rotating frame, yields values of the order mV m−1.  相似文献   
9.
10.
One procedure for solving MHD equations is to search for a solution in an area that is restricted by boundary surfaces. This procedure requires the magnetic field to be truncated on the boundary. As a result, boundary current sheets appear. This approach is certainly acceptable for laboratory plasma experiments in which these surfaces are made of metal. For astrophysically relevant plasma, an alternative approach has been formulated by the author. We require the total magnetic energy,W, to be finite and, simultaneously, the magnetic fieldB to be continuous. The proposed approach leads to an eigenvalue problem that is treated analytically. The complete set of exact MHD solutions with multi-toroidal structure is obtained. These solutions are applied to coronal loops and transients, using the similarity assumption for time-dependent solutions.The derived pressure and density excess distributions are discussed. The estimation of the total mass excess, as well as the minimum value of the magnetic field intensity, is demonstrated. An indirect way of obtaining magnetic field measurements for transients, based on the developed model, is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号