首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   2篇
自然地理   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 343 毫秒
1
1.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   
2.
In special cases in which satellite constellations can be described by a limited set of parameters, a correlation between the latter and the constellation characteristics (i.e. shape and kinematics of the satellite configurations) has been investigated. Such cases may be a useful starting point for designing more complex constellations in order to achieve better the desired performances. Therefore, this proves to be one way to fix an initial set of parameters once the desired behaviour of the constellation has been established on the basis of the operational purposes required. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
4.
Sedimentological, geochemical and micropalaeontological data from sediment cores in the northwestern Adriatic Sea were obtained to reconstruct the stratigraphic framework and palaeogeographic setting during the last post‐glacial sea‐level rise (14000–6000 yr BP). Four lithostratigraphic units were identified: (a) distal plain deposits (>14000 yr BP), submerged during the first phases of marine ingression; (b) coastal lagoon system; (c) barrier‐lagoon system, which is dated back to between 10019 ± 61 and 10228 ± 174 cal. yr BP from 14C dating on peat and shell remains; (d) marine prodelta deposits (<5500 yr BP). Geochemical data allow the identification of three distinct sediment sources: River Po, River Adige and Eastern Alpine rivers characterised by decreasing Ni/Mg ratios (50–70, 8–15 and 5–10, respectively) and Ba/Al ratios of 45–55, 55–65 and 35–45, respectively. The three sources display different relative abundances in time. During the Lateglacial, the Po is the main sediment source for the southern cores, whereas the Eastern Alps and the River Adige are the main sediment sources for the northern cores. This suggests a northern position of the Po River bed compared to previous studies. Coastal drowning led to a homogenization of the provenance signal within the sediments. Only after the marine transgression does a River Po signal appear in the northern cores. At the same time, in the southern cores the signal of Eastern Alpine rivers becomes stronger. Transgressive barrier‐lagoon and recent sediments do not display a predominant signal for provenance indicators. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
We evaluate the potential of imaging for the first time, the near-earth space plasma environment seamlessly from the ionosphere through the magnetosphere by remotely sensing Thomson scattering of solar visible light by geospace electrons. Using state of the art first principles models of the magnetosphere/ionosphere system, we show that the column emission rates are weak, generally less than 10 Rayleighs, but detectable with currently available instrument technology recently deployed for heliospheric imaging. We demonstrate that distinct features such as the bow shock, magnetosheath and magnetopause are detectable in synthetic images simulated using modified solar coronagraphs and white light imagers, providing that the large background signals are properly quantified. The availability of global geospace images of the electron concentration will enable major advances in our understanding of how Earth's near-space environment responds as a coupled system to changing solar forcings. Such images are expected to play a central role in space weather assessment and forecasting, from which significant capabilities will accrue, much as the imaging of the Earth's surface and lower atmosphere has advanced understanding and forecasting of tropospheric weather.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号