首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
测绘学   3篇
地球物理   2篇
地质学   15篇
天文学   9篇
综合类   1篇
自然地理   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Prabir Dasgupta   《Sedimentary Geology》2008,205(3-4):100-110
Four types of soft-sediment folds of distinct geometry can be recognized in the upper part of the Talchir Formation (Lower Permian) of Jharia Basin, India. These folds, on systematic examination, indicate some events of progressive deformation. Experimental study reveals that if a layered stack of clay and overlying sand is allowed to flow slowly down a slope, differential velocity due to viscosity contrast leads to the deformation of the rheologic interface. The sharp planar contact gradually becomes wavy leading to the development of round-hinged folds involving sediments adjacent to it. With the advancement of the flow these folds gradually become overturned with the rotation of the axial plane in the direction of flow. Computer simulation suggests that progressive deformation of these folds by simple shearing may lead to the formation of tight isoclinal folds, which on dislocation along intrastratal normal faults may lead to the development of rootless isoclinal folds. The sheath folds observed in the studied section also indicate accentuation of the curved hinge due to simple shearing. The spatial distribution of these fold types in conjunction with the inferred direction of progressive deformation indicate basinward translation of the slump slice. If the same stack of sediments rapidly flows down the slope, the waveform generated at the interface quickly breaks in the form of roll-up recumbent fold due to Kelvin–Helmholtz instability.  相似文献   
2.
3.
4.
In this work we explore the background dynamics when dark energy is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. Here DGP and the RSII brane models have been considered separately. Dark energy in the form of Generalized Cosmic Chaplygin gas is considered. A suitable interaction between dark energy and dark matter is considered in order to at least alleviate (if not solve) the cosmic coincidence problem. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. A significant attempt towards the solution of the cosmic coincidence problem is taken. The statefinder parameters are also calculated to classify the dark energy models. Graphs and phase diagrams are drawn to study the variations of these parameters. It is also seen that the background dynamics of Generalized Cosmic Chaplygin gas is consistent with the late cosmic acceleration, but not without satisfying certain conditions. It has been shown that the universe in both the models follows the power law form of expansion around the critical point, which is consistent with the known results. Future singularities were studied and our models were declared totally free from any types of such singularities. Finally, some cosmographic parameters were also briefly studied. Our investigation led to the fact that although Generalized cosmic Chaplygin gas with a far lesser negative pressure compared to other dark energy models, can overcome the relatively weaker gravity of RS II brane, with the help of the negative brane tension, yet for the DGP brane model with much higher gravitation, the incompetency of Generalized cosmic Chaplygin gas is exposed, and it cannot produce the accelerating scenario until it reaches the phantom era.  相似文献   
5.
Prabir Dasgupta  Priyanka Manna 《Earth》2011,104(1-3):186-198
The grain-flow has so far been defined with reference to the distinctive sediment-support mechanism, the dispersive pressure. The role of sediment-support mechanism, however, is required in a multiphase flow to prevent the gravitational settling of the particles through the driving medium during the flow. In a single-phase flow of non-cohesive grains no such secondary mechanism is required to counteract the gravitational pull, the driving force of the flow. So the definition of grain-flow needs a critical revision. This, in turn, involves proper understanding of the grain-flow mechanism, so that the relation between the process and the product can be properly established. The most distinctive feature often demonstrated by a grain-flow deposit is the particle size segregation, which leads to the development of inverse grading. The available explanations for this phenomenon find theoretical constraints. In the present study an attempt was made to understand the mechanism of single-phase non-cohesive granular flow of different flow regime and the particle segregation pattern in the resultant deposit through laboratory simulation. The experimental observations revealed that no sustained granular flow sets in on a slope deviating much from the limiting value of the angle of repose of the granular material. A persistent simple shear flow develops on slopes of this critical value. Each of the grains rolls in response to simple shearing. If the shear stress attains a critical value, theoretically the larger grains can even climb up the adjacent smaller ones towards the down-slope direction. In reality, however, high angle climb is not very common. The larger grains preferably roll over the smaller grains when the common tangent becomes almost horizontal or makes a very low angle with the direction of flow, and by this process gradually reaches the upper surface of the flow causing the development of inverse grading. The upper surface of the resultant deposit remains parallel to the sloping substratum. These properties readily distinguish this variety of granular flow from the other natural flows, and the flow may thus be assigned the distinct status of grain-flow.  相似文献   
6.
The lowest unit of the Talchir Formation of Talchir Basin, Orissa, was described by pioneer workers as the ‘basal boulder bed’. In an attempt to explain the co-existence of gravel and clay, materials of contrasting hydraulic properties, a probable situation resembling the effects of the action of ground-ice enabled boulders to be carried down by sluggish currents resulting in an intermixture of large boulders and fine mud was conceived. Misinterpretation of this conclusion led to a general tendency to describe the ‘basal boulder bed’ as ‘glacial tillite’. However, the unit described as ‘basal boulder bed’ is actually represented by a matrix rich conglomerate with pockets of normally graded silty clay. The present study reveals that the depositional imprints preserved in this part of the sedimentary succession indicate emplacement of successive debris flows generated through remobilization of pre-existing unconsolidated sediments. Small pockets of fine-grained turbidites presumably deposited from the entrained turbidity currents associated with the debris flows suggest the composite character of the debris flow deposit.  相似文献   
7.
8.
9.
Motivated by some previous works of Rudra et al. we set to explore the background dynamics when dark energy in the form of New Variable Modified Chaplygin gas is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. The main idea is to find out the efficiency of New variable modified Chaplygin gas to play the role of DE. As a result we resort to the technique of comparison with standard dark energy models. Here the RSII brane model have been considered as the gravity theory. An interacting model is considered in order to search for a possible solution of the cosmic coincidence problem. A dynamical system analysis is performed because of the high complexity of the system. The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters and get an insight into the effectiveness of the dark energy model. It is also seen that the background dynamics of New Variable Modified Chaplygin gas is consistent with the late cosmic acceleration. After performing an extensive mathematical analysis, we are able to constrain the parameters of new variable modified Chaplygin gas as m<n to produce the best possible results. Future singularities are studied and it is found that the model has a tendency to result in such singularities unlike the case of generalized cosmic Chaplygin gas. Our investigation leads us to the fact that New Variable Modified Chaplygin gas is not as effective as other Chaplygin gas models to play the role of dark energy.  相似文献   
10.
In this work, we have assumed the generalized Vaidya solution in Lovelock theory of gravity in (n+2)-dimensions. It has been shown that Gauss-Bonnet gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can be constructed by suitable choice of parameters. We have investigated the occurrence of singularities formed by the gravitational collapse in above three particular forms of Lovelock theory of gravity. The dependence of the nature of singularity on the existence of radial null geodesic for Vaidya space-time has been specially considered. In all the three models, we have shown that the nature of singularities (naked singularity or black hole) completely depend on the parameters. Choices of various parameters are shown in tabular form. In Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked singularity increases with increase in dimensions. In dimensionally continued Lovelock gravity, the naked singularity is possible for odd dimensions for several values of parameters. In pure Lovelock gravity, only black hole forms due to the gravitational collapse for any values of parameters. It has been shown that when accretion is taking place on a collapsing object, it is highly unlikely to get a black hole. Finally on considering the phantom era in the expanding universe it is observed that there is no possibility of formation of a black hole if we are in the Gauss-Bonnet gravity considering the accreting procedure upon a collapsing object.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号