首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
天文学   5篇
  2002年   1篇
  1997年   1篇
  1987年   1篇
  1982年   1篇
  1967年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
The RHESSI Spectrometer   总被引:2,自引:0,他引:2  
Smith  D.M.  Lin  R.P.  Turin  P.  Curtis  D.W.  Primbsch  J.H.  Campbell  R.D.  Abiad  R.  Schroeder  P.  Cork  C.P.  Hull  E.L.  Landis  D.A.  Madden  N.W.  Malone  D.  Pehl  R.H.  Raudorf  T.  Sangsingkeow  P.  Boyle  R.  Banks  I.S.  Shirey  K.  Schwartz  Richard 《Solar physics》2002,210(1-2):33-60
RHESSI observes solar photons over three orders of magnitude in energy (3 keV to 17 MeV) with a single instrument: a set of nine cryogenically cooled coaxial germanium detectors. With their extremely high energy resolution, RHESSI can resolve the line shape of every known solar gamma-ray line except the neutron capture line at 2.223 MeV. High resolution also allows clean separation of thermal and non-thermal hard X-rays and the accurate measurement of even extremely steep power-law spectra. Detector segmentation, fast signal processing, and two sets of movable attenuators allow RHESSI to make high-quality spectra and images of flares across seven orders of magnitude in intensity. Here we describe the configuration and operation of the RHESSI spectrometer, show early results on in-flight performance, and discuss the principles of spectroscopic data analysis used by the RHESSI software.  相似文献   
2.
Ten to 100 meV protons from the solar flare of March 24, 1966 were observed on the University of California scintillation counter on OGO-I. The short rise and decay times observed in the count rates of the 32 channels of pulse-height analysis show that scattering of the protons by the interplanetary field was much less important in this event than in previously observed proton flares. A diffusion theory in which D = M r is found to be inadequate to account for the time behavior of the count rates of this event. Small fluctuations of the otherwise smooth decay phase may be due to flare protons reflected from the back of a shock front, which passed the earth on March 23.  相似文献   
3.
We describe a balloon payload designed to study the processes of energy release, particle acceleration, and heating of the active corona, in hard X-ray microflares and normal flares. An array of liquid nitrogen-cooled germanium detectors together with large area phoswich scintillation detectors provide the highest sensitivity (500 cm2) and energy resolution (0.7 keV) ever achieved for solar hard X-ray (15–600 keV) measurements. These detectors were flown in February 1987 from Australia on a long duration RAdiation COntrolled balloON (RACOON) flight (LDBF) which provided 12 days of observations before cutdown in Brazil. The payload includes solar cells for power, pointing and navigation sensors, a microprocessor controlled data system with VCR tape storage, and transmitters for GOES and ARGOS spacecraft. This successful flight illustrates the potential of LDBF's for solar flare studies.Also Physics Department.Presently at Space Sciences Laboratory, University of California, Berkeley CA 94720.  相似文献   
4.
Feffer  P. T.  Lin  R. P.  Slassi-Sennou  S.  McBride  S.  Primbsch  J. H.  Zimmer  G.  Pelling  R. M.  Pehl  R.  Madden  N.  Malone  D.  Cork  C.  Luke  P.  Vedrenne  G.  Cotin  F. 《Solar physics》1997,171(2):419-445
The HIgh-REsolution Gamma-ray and hard X-ray Spectrometer (HIREGS) consists of an actively shielded array of twelve liquid-nitrogen-cooled germanium detectors designed to provide unprecedented spectral resolution and narrow-line sensitivity for solar gamma-ray line observations. Two long-duration, circumpolar balloon flights of HIREGS in Antarctica (10–24 January, 1992 and 31 December, 1992–10 January, 1993) provided 90.9 and 20.4 hours of solar observations, respectively. During the observations, eleven soft X-ray bursts at C levels and above (largest M1.7) occurred, and three small solar hard X-ray bursts were detected by the Compton Gamma-Ray Observatory. HIREGS detected a significant increase above 30 keV in one. No solar gamma-ray line emission was detected. Limits on the 2.223-MeV line and the hard X-ray emission are used to estimate the relative contribution of protons and electrons to the energy in flares, and to coronal heating. For the 2.223-MeV line, the upper limit fluence is 0.8 ph cm-2 in the flares, and the upper limit flux is 1.8 × 10-4 ph s-1 cm-2 in the absence of flares. These limits imply that 6 × 1030 (2) protons above 30 MeV were accelerated in the flares, assuming standard photospheric abundances and a thick target model. The total energy contained in the accelerated protons >30 MeV is 4 × 1026 ergs, but this limit can be more than 1030 ergs if the spectrum extends down to 1 MeV. The upper limit on the total energy in accelerated electrons during the observed flares can also exceed 1030 ergs if the spectrum goes down to 7 keV. Quiet-Sun observations indicate that 1026erg s-1 are deposited by energetic protons >1 MeV, well below the1027 –1028 erg s-1 required for coronal heating, while <3 × 1027 erg s-1 are deposited by energetic electrons, which does not exclude the possibility of coronal heating by quiet-time accelerated electrons. The quiet-Sun observations also suggest that if protons stored in the corona are to supply the energy for flares, as suggested by Elliot (1964), the proton spectrum must extend down to at least 2 MeV. However, collisional losses at typical coronal-loop densities prevent those low-energy protons from being stored for 104 s. It therefore seems unlikely that the energy for flares could come from energetic protons stored over long periods.  相似文献   
5.
Lin  R. P.  Curtis  D. W.  Primbsch  J. H.  Harvey  P. R.  Levedahl  W. K.  Smith  D. M.  Pelling  R. M.  Duttweiler  F.  Hurley  K. 《Solar physics》1987,113(1-2):333-345

We describe a balloon payload designed to study the processes of energy release, particle acceleration, and heating of the active corona, in hard X-ray microflares and normal flares. An array of liquid nitrogen-cooled germanium detectors together with large area phoswich scintillation detectors provide the highest sensitivity (∼500 cm2) and energy resolution (≤0.7 keV) ever achieved for solar hard X-ray (∼15–600 keV) measurements. These detectors were flown in February 1987 from Australia on a long duration RAdiation COntrolled balloON (RACOON) flight (LDBF) which provided 12 days of observations before cutdown in Brazil. The payload includes solar cells for power, pointing and navigation sensors, a microprocessor controlled data system with VCR tape storage, and transmitters for GOES and ARGOS spacecraft. This successful flight illustrates the potential of LDBF's for solar flare studies.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号