首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
天文学   2篇
  2021年   2篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Ocean Dynamics - This study investigates the role of driving atmospheric forces [winds, net heat flux, and evaporation–precipitation (E–P)] and the possible mechanisms on the mixed...  相似文献   
2.
In the present study, we investigate the possible relationship of IP parameters of solar wind and interplanetary magnetic field with ground-based geomagnetic indices. To carry out the study, we take all the IP shock events listed by Proton Monitor onboard Solar and Heliospheric Observatory (SOHO) during 2005, and plot the time variations of all the IP parameters and geomagnetic parameters (±5 days), centered at the shock arrival time. Next, we obtain scatter plots of absolute values of solar wind parameters such as Vsw, Nsw and Interplanetary Magnetic Field (IMF) components Bx, By, Bz and total B with the values of geomagnetic parameters such as Dst, Kp indices, dayside Magnetopause (MP) distance and Cosmic-Ray Neutron Monitor count (CRNM). The scatter plots show that before the IP shock, the pattern is random with no clear relationship. Following the shock, a clear pattern emerges with a type of relationship being seen — clear for SHARP shocks and less clear for DIFFUSE shocks. A total of 10 shock events for 2005 have been studied. Typical examples of this behaviour are the shock events of January 21, 2005 and May 15, 2005. Our study suggests a definite correlation between changes in the solar wind and interplanetary magnetic field parameters and ground-based geomagnetic response. We are trying to obtain quantitative relationships between these for shock events of 2005.  相似文献   
3.
In view of the renewed interest in the study of energetic particles in the outer radiation belt of the earth, we feel it will be helpful in looking for the energy dependence of the electron energy spectrum at geostationary orbit. This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic electron enhancements at geosynchronous altitudes during solar energetic proton events of 2005.  相似文献   
4.
Ocean Dynamics - This study addresses the air–sea interaction processes and mixed layer variability, which cause the intraseasonal oscillations in the sea surface temperature (SST) during...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号