首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地质学   1篇
天文学   9篇
  2002年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Observations of a sunspot in the Civ line at 1548 Å formed in the transition region have been analyzed to obtain the time variations and/or mean values of the velocity, intensity, longitudinal magnetic field, and line width. Oscillations with periods between approximately 110 and 200 s are observed only over the umbra where the transition region magnetic field is highest and the line width is smallest. When periodic intensity variations occur at the same frequency as the velocity oscillations, the peak intensities occur slightly before the maximum upward motions. No periodic variations in the transition region magnetic field have been detected. Scatter diagrams are presented which show possible relationships between the flow velocity, emission line intensity, line width, and transition region magnetic field.  相似文献   
2.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   
3.
Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25 × 106 K, while the temperature from the full-disk proportional counter data is 15 × 106 K. The density is 3 × 1010cm–3. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss and chromospheric evaporation, are in qualitative agreement with the decay phase observations.Presently at NASA/Marshall Space Flight Center.  相似文献   
4.
The shape of the sunspot cycle   总被引:5,自引:0,他引:5  
The temporal behavior of a sunspot cycle, as described by the International sunspot numbers, can be represented by a simple function with four parameters: starting time, amplitude, rise time, and asymmetry. Of these, the parameter that governs the asymmetry between the rise to maximum and the fall to minimum is found to vary little from cycle to cycle and can be fixed at a single value for all cycles. A close relationship is found between rise time and amplitude which allows for a representation of each cycle by a function containing only two parameters: the starting time and the amplitude. These parameters are determined for the previous 22 sunspot cycles and examined for any predictable behavior. A weak correlation is found between the amplitude of a cycle and the length of the previous cycle. This allows for an estimate of the amplitude accurate to within about 30% right at the start of the cycle. As the cycle progresses, the amplitude can be better determined to within 20% at 30 months and to within 10% at 42 months into the cycle, thereby providing a good prediction both for the timing and size of sunspot maximum and for the behavior of the remaining 7–12 years of the cycle. The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
5.
NewUBV photometry, obtained between late 1965 and early 1969, is presented and combined with existing published photometry to derive an improved ephemeris for times of maximum brightness: 2439758.00+4 d . .1328n. On leave from Dyer Observatory, Vanderbilt University, Nashville, Tennessee, U.S.A.  相似文献   
6.
A portion of an east limb flare-prominence observed in Hα by NOAA/Boulder and NASA/ MSFC patrol facilities on 30 April 1974 is analyzed. Following a rapid (~2 min) achievement of a maximum mass ejection velocity of about 375 km s?1, the ascending prominence reached a height of, at least, 2 × 105 km. We use a one-dimensional, time-dependent hydrodynamic theory (Nakagawa et al., 1975) to compute the total mass (~2 × 1011 g) and energy (~4 × 1026erg) ejected during this part of this event. Theoretical aspects of the coronal response are discussed. We conclude that a moderate temperature and density pulse (factors of ten and two, respectively), for a duration of only 3 min, is sufficient for an acceptable simulation of the Hα observations and the likely coronal response to the ascending prominence and flare-related ejections. No attempt was made to simulate the additionally-important spray and surge features which probably contributed a higher level of mass and energy efflux.  相似文献   
7.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   
8.
The solar transition region in the neighbourhood of prominences has been studied from observations with the Ultraviolet Spectrometer and Polarimeter of NASA's Solar Maximum Mission satellite. Dopplergrams from observations of the transition-region lines Civ 1548 Å and Siiv 1393 Å, which are formed at about 105 K, give velocity amplitudes typically in the range ± 15 km s-1. Prominences are found to be located very close to dividing lines between areas of up- and down-draughts in the transition-region. The observed pattern suggests that the 105 K gas flows take place within arcades of magnetic loops, which most likely are part of the supporting magnetic structure for the prominence matter. An additional band of blue-ward Doppler shifts is frequently seen close to quiescent prominences. This may be the source of outward flowing matter along the helmet streamers above filament channels.  相似文献   
9.
We describe briefly the Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission and discuss data pertaining to the emissions observed in lines originating in the transition-region plasma, particularly during impulsive flares. The data pertain to lines from the following ions: SiII, CIV, OIV, SiIV, OV, and FeXXI.  相似文献   
10.
The bulk modulus, K 0, and its pressure derivative K0, of -(Mg0.6, Fe0.4)2SiO4 have been accurately determined to 50.0 GPa under hydrostatic conditions at room temperature in a diamond cell using synchrotron radiation. Our results agree with Brillouin and ultrasonic measurements on -Mg2SiO4 at low pressure, indicating normal elastic behaviour in the metastable pressure range of this high pressure mineral. Our values of K 0 and k0 are 183.0 GPa and 5.4, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号