首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   9篇
地质学   2篇
天文学   1篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2000年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Parsimonious representations of recorded earthquake acceleration time series are obtained by fitting stationary autoregressive moving average models after a variance-stabilizing transformation. Simulated acceleration series are then constructed by generating realizations from the fitted stationary models and applying the reverse transformation. As demonstrated on three components of a typical series, the response spectra for the observed and simulated series show good agreement for periods of less than eight seconds. Further, the model parameters for the three components are very similar, suggesting a consistency which could be useful for identifying site-specific characteristics.  相似文献   
2.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   
3.
The Gamow–Teller (GT) transition is inarguably one of the most important nuclear weak transitions of the spin-isospin στ type. It has many applications in nuclear and astrophysics. These include, but are not limited to, r-process β-decays, stellar electron captures, neutrino cooling rates, neutrino absorption and inelastic scattering on nuclei. The quasiparticle random phase approximation (QRPA) is an efficient way to generate GT strength distribution. In order to better understand both theoretical systematics and uncertainties, we compare the GT strength distributions, centroid and width calculations for \({^{40\mbox{--}60}\mathrm{Ti}}\) isotopes, using the pn-QRPA, Pyatov method (PM) and the Schematic model (SM). The pn-QRPA and SM are further sub-divided into three categories in order to highlight the role of particle-particle (pp) force and deformation of the nucleus in the GT strength calculations. In PM, we study only the influence of the pp force in the calculation. We also compare with experimental results and other calculations where available. We found that the inclusion of pp force and deformation significantly improves the performance of SM and pn-QRPA models. Incorporation of pp force leads to pinning down the centroid value in the PM. The calculated GT strength functions using the pn-QRPA (C) and SM (C) models are in reasonable agreement with measured data.  相似文献   
4.
The study of the behaviour of historic buildings that have suffered from earthquakes has become a valuable tool for the understanding of earthquake resistant construction techniques and materials. Byzantine monuments of the 11–13th century in Kiev have been studied to provide insights into their effective dynamic properties facing severe earthquake history in the area. The recessed brickworks according to the “concealed course” construction technique of the St. Sophia Cathedral (11th century), the Church of St. Michael in the Vydubytskyi Monastery (11th century), the Tithe Church of the Assumption of the Virgin (10th century) and the Cathedral of Assumption of the Virgin (11th century) in the Monastery of the Caves (Pecherskyi monastery) in Kiev were studied and the material properties of bricks and lime mortars with ceramic fill were investigated (mechanical strength tests, mineralogical, chemical and microstructural analysis). The results show major similarities with those of the Byzantine monuments in Istanbul (Theodosian Walls and Hagia Sophia — 6–11th century construction phases), giving evidence of earthquake resistant construction techniques and materials allowing for continuous stresses and strains. Hence, didactics on proper restoration techniques and materials are deduced aiming at their present safety in the face of future earthquakes.  相似文献   
5.
An approximate method is proposed for the scattering of SH-waves by foundations of irregular shape and the resulting soil-structure interaction problems. The scattering of elastic waves by the rigid foundation embedded in half-space is solved approximately by using integral representation of the wave equation. The procedure is the Born approximation which has been widely used in quantum mechanics for collision and scattering theory though not well-known in elastodynamics. This paper extends the previous work of the authors on the scattering of waves to account for soil-structure interaction. The motion of the foundation is evaluated by the balance of momentum under stresses due to the incident waves as well as the waves generated by its own motion and the forces coming from the superstructure. The model investigated consists of an infinitely long elastic shear wall of height H and thickness h erected on a rigid infinitely long foundation. Results are presented for the cases with circular, elliptical and rectangular foundations. For a circular foundation, excellent agreement is found with the exact solutions for the foundation displacement and the relative displacement between the top and bottom of the structure for the entire range of wave numbers. For an elliptical foundation, accuracy decreases with increasing wave numbers. Foundation displacements are compared for foundation shapes that are shallow elliptical, deep elliptical, rectangular and circular. It is observed that foundation displacements are dependent on the angle of incidence except for a semi-circle. The results on the details of the scattered field are, however, not as accurate.  相似文献   
6.
7.
8.
Measurements are conducted with small samples in the laboratory and thus for all practical purposes the medium is macroscopically homogeneous. On the other hand, the uncertainties and the irregular changes in situ are macroscopic inhomogeneities. This work is an attempt to account for these stochastic changes in the elastic properties and density in a rational manner. The method used is that of Karal and Keller which is based on the use of the Green's function and neglect of third-order correlations. The resulting integral equations are solved by Laplace transform. The analysis indicates that the energy decay in the mean motion through random mode coupling introduces damping into even a purley'elastic medium and enhances the damping in a significant manner in a hysteretic viscoelastic medium. This consideration is important in relating the damping and dispersion characteristics of wave in situ to those measured in the laboratory. The formulation is extended to multilayer systems through transfer matrices and to arbitrary inputs by Fourier transform. Sample calculations are presented for single and multilayer systems to obtain response spectra and for the response to Gaussian and actual earthquake input motions.  相似文献   
9.
The problem treated here is the dynamics of a bay where water is driven through its opening periodically in time. The basic equations are expressed in the two horizontal coordinates and time and they are obtained by an integration of the Navier-Stokes equations in the vertical coordinate. The equations are nonlinear because of the convective terms in the acceleration. The problem of harbor dynamics provides a natural parameter as the ratio of mass of water entering the bay through the waves to the total mass of water in the bay. This small parameter multiplies the nonlinear terms and thus the problem is ideally suited for a perturbation analysis. The nonlinear terms are responsible for the generation of secondary flows and are particularly important near resonant frequences. The analysis further indicates the existence of a time independent flow analogous to acoustic streaming, known from solutions of the Navier-Stokes equations. The question of vorticity is studied and is seen that: a constant dissipation coefficient precludes the generation of vorticity even for the nonlinear case: and that only a weak (second order) vorticity can exist in the case of a variable dissipation term expressed through the Chezy coefficient. The study suggests also a semi analytic-numerical scheme with savings of 0(102) for irregular geometries through the separation of the various order harmonics as opposed to the usual integration in time.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号