首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
地质学   9篇
天文学   12篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 238 毫秒
1.
We study in some detail one-dimensional NLTE effects in solar Fei lines. The lines selected are frequently used in solar polarimetry, and also in studies of line asymmetries and for abundance determinations. Our model atom for Fei–Feii–Feiii is realistic: it takes account of multiplet structure and it includes over 200 bound–bound and bound–free transitions in detail. We use very efficient iterative methods for the self-consistent solution of the kinetic and radiative transfer equations (Auer, Fabiani Bendicho, and Trujillo Bueno, 1994). We have applied these fast methods of solution because they are suitable for the investigation of 2D and 3D NLTE transfer effects with multilevel atoms, which constitutes the next step of our ongoing research project on the iron line formation problem.  相似文献   
2.
Mineralogy and Petrology - In this paper, new main and trace elements and isotopic data are presented for 14 coarse-grained eclogite xenoliths from the V. Grib kimberlite pipe in the central part...  相似文献   
3.
4.
We analyze the oscillations of the Hα profile width based on our observations of the chromosphere at the base of solar coronal holes. The maximum oscillation amplitude averaged over ten time series is 64 m 0 A. Direct calculations show that this value cannot be reached through temperature oscillations, because the periodic intensity fluctuations observed during our experiment did not exceed 5%, corresponding to Hα profile broadening only by 1.5–2 m Å. We hypothesize that the observed variations can result from the propagation of torsional Alfvén waves in the chromosphere of coronal holes.  相似文献   
5.
6.
This study presents mineralogical and thermobarometric data for equilibrium peridotite assemblages from the V. Grib kimberlite pipe of the Arkhangelsk diamond province. We provided the first constraints on the composition, structure, thermal state, and lower boundary of the lithospheric mantle beneath the V. Grib kimberlite pipe. It was found that phlogopite-free and phlogopite-bearing peridotite xenoliths can be distinguished by their mineral chemistry. The occurrence of phlogopite in peridotites may represent evidence for modal metasomatism responsible for variation in the mineral composition of phlogopite-pyrope and pyrope peridotites. On the basis of P-T estimates, we conclude that modal metasomatism may have affected the entire thickness of the lithospheric mantle beneath the V. Grib kimberlite pipe. Comparison of our results with the available data from the literature shows strong vertical and lateral mantle heterogeneity beneath kimberlite pipes of the Lomonosov deposit and the V. Grib pipe.  相似文献   
7.
We consider the NLTE formation of the resonance Ba II line λ 455.4 nm in the solar spectrum for three one-dimensional and one three-dimensional hydrodynamic models of the quiet solar atmosphere. The sensitivity of the line to atomic parameters, microturbulent and macroturbulent velocities, as well as to oscillator strength and barium abundance uncertainties was examined. The wings of the barium line are shown to be most sensitive to the van der Waals broadening constant. Another important parameter is the barium abundance. Our NLTE estimate of the solar barium abundance (A Ba = 2.16) derived with allowance made for the nonuniform solar atmosphere structure is in good agreement with earlier results. The influence of granular convective motions on the line profile shape was studied, and the profiles formed in granules and in intergranular lanes are shown to be asymmetric and differently shaped. We demonstrate that the theoretical profiles match well the observed ones when the NLTE effects and the granular structure are taken into account.  相似文献   
8.
This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ~60–110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.  相似文献   
9.
The limb darkening and center-to-limb variation of the continuum polarization is calculated for a grid of one-dimensional stellar model atmospheres and for a wavelength range between 300 and 950 nm. Model parameters match those of the transiting stars taken from the NASA exoplanet archive. The limb darkening of the continuum radiation for these stars is shown to decrease with the rise in their effective temperature. For the λ = 370 nm wavelength, which corresponds to the maximum of the Johnson–Cousins UX filter, the limb darkening values of the planet transiting stars lie in a range between 0.03 and 0.3. The continuum linear polarization depends not only on the effective temperature of the star but also on its gravity and metallicity. Its value decreases for increasing values of these parameters. In the UX band, the maximum linear polarization of stars with transiting planets amounts to 4%, while the minimum value is approximately 0.3%. The continuum limb darkening and the linear polarization decrease rapidly with wavelength. At the R band maximum (λ = 700 nm), the linear polarization close to the limb is in fact two orders of magnitude smaller than in the UX band. The center- to-limb variation of the continuum intensity and the linear polarization of the stars with transiting planets can be approximated, respectively, by polynomials of the fourth and the sixth degree. The coefficients of the polynomials, as well as the IDL procedures for reading them, are available in electronic form. It is shown that there are two classes of stars with high linear polarization at the limb. The first one consists of cold dwarfs. Their typical representatives are HATS-6, Kepler-45, as well as all the stars with similar parameters. The second class of stars includes hotter giants and subgiants. Among them we have CoRoT-28, Kepler-91, and the group of stars with effective temperatures and gravities of approximately 5000 K and 3.5, respectively.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号