首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   2篇
天文学   7篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有9条查询结果,搜索用时 171 毫秒
1
1.
Gadun  A.S.  Solanki  S.K.  Sheminova  V.A.  Ploner  S.R.O. 《Solar physics》2001,203(1):1-7
We present 2-D, fully compressible radiation-MHD simulations of the solar photospheric and subphotospheric layers that run for 2 hours of solar time starting from a magnetic configuration with mixed polarities. In the atmospheric layers the simulation reveals a correlation between field strength and inclination, with a nearly vertical strong-field magnetic component and a more horizontal weak-field component, in agreement with the observations. Our simulation also shows that magnetic flux is converted from one of these states to the other. In particular, magnetic flux sheets can also be formed when a new downflow lane starts due to granule fragmentation. The dynamics of the granulation and field-line reconnection are found to play a role in the initial stages of a magnetic element's formation. The simulation predicts that during or shortly after their formation magnetic elements could be associated with oppositely polarized flux at a small spatial scale.  相似文献   
2.
Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI λ1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of 192 G at the solar surface. According to the magnetic-field distribution obtained, the most probable absolute strength of the horizontal magnetic field at an optical depth of τ 5 = 1(τ 5 denotes τ at λ = 500 nm) is 50 G, while the mean value is 244 G. On average, the horizontal magnetic fields are stronger than the vertical fields to heights of about 400 km in the photosphere due to their higher density and the larger area they occupy. The maximum factor by which the horizontal fields are greater is 1.5. Strong horizontal magnetic flux tubes emerge at the surface as spots with field strengths of more than 500 G. These are smaller than granules in size, and have lifetimes of 3–6 min. They form in the photosphere due to the expulsion of magnetic fields by convective flows coming from deep subphotospheric layers. The data obtained qualitatively agree with observations with the Hinode space observatory.  相似文献   
3.
Fourier transform techniques were used to determine the macroturbulent velocity under the condition that mictoturbulent and stellar rotation velocities are not known. In order to distinguish the effects of rotation from macroturbulence effects in slowly rotating stars, primarily the main lobe of residual Fourier transforms of the observed lines, which were taken from the solar spectrum and the spectra of two other stars, was used. This case of Fourier analysis of spectral lines is the most complicated one. The end results were in a satisfactory agreement with the data obtained using different methods. The average values of microturbulent, macroturbulent, and rotation velocities were 0.85, 2.22, and 1.75 km/s for the Sun as the star; 0.58, 1.73, and 0.78 km/s for HD 10700; and 1.16, 3.56, and 6.24 km/s for HD 1835. It was found that the macroturbulent velocity decreases with height in the atmosphere of the Sun and HD 1835. In the case of HD 10700, the macroturbulent velocity did not change with height, and the determined rotation velocity was two times lower than the one obtained using other methods. It was concluded that Fourier transform techniques are suitable for determining the velocities in atmospheres of solar-type stars with very slow rotation.  相似文献   
4.
The extended wings of the Ca?ii H and K lines provide excellent diagnostics of the temperature stratification of the photosphere of the Sun and of other cool stars, thanks to their LTE opacities and source functions and their large span in formation height. The aim of this study is to calibrate the usage of the H and K wings in a one-dimensional interpretation of spatially averaged spectra and in deriving per-pixel stratifications from resolved spectra. I use multi-dimensional simulations of solar convection to synthesize the H and K wings, derive one-dimensional models from these wings as if they were observed, and compare the resulting models to the actual simulation input. I find that spatially averaged models constructed from the synthesized wings generally match the simulation averages well, except for the deepest layers of the photosphere where large thermal inhomogeneities and Planck-function non-linearity gives large errors. The larger the inhomogeneity, the larger the error. The presence of strong network fields increases such inhomogeneity. For quiet photospheric conditions the temperature excesses reach about 200?K. One-dimensional stratification fits of discrete structures such as granulation and small-scale magnetic concentrations give satisfactory results with errors that are primarily due to steep temperature gradients and abrupt changes of temperature with depth. I conclude that stratification modeling using the H and K wings is a useful technique for the interpretation of solar high-resolution observations.  相似文献   
5.
A new crossing method for the study of turbulent velocities in solar and stellar photospheres is considered. The method does not need knowledge of the abundance and oscillator strengths for determining the microturbulent velocity, if the macroturbulent velocity is adopted; or it allows investigation of the micro- and macro-velocities simultaneously, if the abundance and oscillator strengths are known. Using the crossing method for 200 lines of neutral iron we obtain microturbulent velocities for a large range of depths in the solar photosphere. The distribution of macroturbulent velocities with depth is also investigated. The total velocity field calculated from the obtained micro- and macro-velocities agrees with previous results from independent methods. This demonstrates the reliability of using the crossing method for separate determination of the micro- and macroturbulent velocities in solar and stellar atmospheres.  相似文献   
6.
A brief overview of the results of the study of the red giant Arcturus is given. One-dimensional LTE modeling of the atmospheres of Arcturus and the Sun as a star is carried out on the basis of calculation of the extended wings of the H and K Ca II lines. It is found that the local continuum in this spectral region is underestimated by an average of 12% in the atlases of Arcturus. The average deficit in UV absorption amounts to 43% (Arcturus) and 9% (the Sun). The correction factor to the opacity in continuum for the wavelengths of 390.0, 392.5, 395.0, 398.0, and 400.0 nm equals 2.20, 1.90, 1.70, 1.55, and 1.45 (Arcturus) and 1.20, 1.20, 1.20, 1.17, and 1.15 (the Sun), respectively. Model calculations agree completely with the estimates of the parameters of the Arcturus atmosphere (T eff = 4286 K and logg = 1.66) and the elemental abundances that were presented by Ramirez and Allende Prieto [56]. The obtained model of the atmosphere of Arcturus is presented in tabular form.  相似文献   
7.
The right approach to the problem of the depth of Fraunhofer line formation enables us to distinguish the main processes involved in the formation of a Fraunhofer line and to locate the depths for these processes in the photosphere.Physical and analytical (with the help of contribution functions) comprehension of these processes facilitates considerably the understanding of the notion of the depth of formation of Fraunhofer lines. This makes it possible to account for the connections of these processes with the origin and depth of location of different solar phenomena which are being investigated by using Fraunhofer lines.  相似文献   
8.
The properties of solar magnetic fields on scales less than the spatial resolution of solar telescopes are studied. A synthetic infrared spectropolarimetric diagnostic based on a 2D MHD simulation of magnetoconvection is used for this. Analyzed are two time sequences of snapshots that likely represent two regions of the network fields with their immediate surroundings on the solar surface with unsigned magnetic flux densities of 300 and 140 G. In the first region from the probability density functions of the magnetic field strength it is found that the most probable field strength at log τ 5=0 is equal to 250 G. Weak fields (B<500 G) occupy about 70% of the surface, whereas stronger fields (B>1000 G) occupy only 9.7% of the surface. The magnetic flux is −28 G and its imbalance is −0.04. In the second region, these parameters are correspondingly equal to 150 G, 93.3%, 0.3%, −40 G, and −0.10. The distribution of line-of-sight velocities on the surface of log τ 5=−1 is estimated. The mean velocity is equal to 0.4 km s−1 in the first simulated region. The average velocity in the granules is −1.2 km s−1 and in the intergranules it is 2.5 km s−1. In the second region, the corresponding values of the mean velocities are equal to 0, −1.8, and 1.5 km s−1. In addition the asymmetry of synthetic Stokes V profiles of the Fe i 1564.8 nm line is analyzed. The mean values of the amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude asymmetry is increased to 10% whereas the area asymmetry is only slightly varied.  相似文献   
9.
Basic scenarios and mechanisms for the formation and decay of small-scale magnetic elements and their manifestation in synthesized Stokes profiles of the Fe I 15648.5 Å infrared line are considered in the context of two-dimensional modeling of nonstationary magnetogranulation on the Sun. The stage of convective collapse is characterized by large redshifts in the V profiles accompanied by complete Zeeman splitting of the I profiles. This is due to intense downward flows of material, which facilitates the concentration of longitudinal field with an amplitude of about several kG in the tube. The dissipation of strong magnetic structures is characterized by blueshifts in their profiles, which result from upward fluxes that decrease the magnetic field in the tube. Typical signatures during key stages in the evolution of compact magnetic elements should be detectable via observations with sufficiently high spatial and temporal resolution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号