首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   1篇
地质学   3篇
天文学   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Hydrographic observations in the eastern Arabian Sea (EAS) during summer monsoon 2002 (during the first phase of the Arabian Sea Monsoon Experiment (ARMEX)) include two approximately fortnight-long CTD time series. A barrier layer was observed occasionally during the two time series. These ephemeral barrier layers were caused byin situ rainfall, and by advection of low-salinity (high-salinity) waters at the surface (below the surface mixed layer). These barrier layers were advected away from the source region by the West India Coastal Current and had no discernible effect on the sea surface temperature. The three high-salinity water masses, the Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW), and the Arabian Sea Salinity Minimum also exhibited intermittency: they appeared and disappeared during the time series. The concentration of the ASHSW, PGW, and RSW decreased equatorward, and that of the RSW also decreased offshore. The observations suggest that the RSW is advected equatorward along the continental slope off the Indian west coast.  相似文献   
2.
The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler?CHendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly patterns were very similar to that during Phase 1 and 2 except for above normal convective anomalies over equatorial Indian Ocean. A general decrease in the rainfall was also observed over most parts of the country. The associated dry conditions extended up to northwest Pacific. Thus the impact of the MJO on the monsoon was not limited to the Indian region. The impact was rather felt over larger spatial scale extending up to Pacific. This study also revealed that the onset of break and active events over India and the duration of these events are strongly related to the Phase and strength of the MJO. The break events were relatively better associated with the strong MJO Phases than the active events. About 83% of the break events were found to be set in during the Phases 7, 8, 1 and 2 of MJO with maximum during Phase 1 (40%). On the other hand, about 70% of the active events were set in during the MJO Phases of 3 to 6 with maximum during Phase 4 (21%). The results of this study indicate an opportunity for using the real time information and skillful prediction of MJO Phases for the prediction of break and active conditions which are very crucial for agriculture decisions.  相似文献   
3.
Cordierite-orthopyroxene migmatitic gneisses exposed in Achankovil unit of the Kerala Khondalite Belt, southern India show evidences of melting, melt extraction and in-situ crystallization of melt under granulite-facies conditions. The sequential mineral assemblages garnet + biotite + orthopyroxene + plagioclase + quartz (± melt) in the mesosomes and garnet + biotite + orthopyroxene + cordierite + plagioclase + K-feldspar + quartz + melt in the melanosomes makes the Achankovil cordierite-orthopyroxene migmatitic gneisses a good example of anatectic rocks, where substantial melt fractions remained in-situ during decompression and cooling. Therefore, the rocks provide an opportunity to investigate deep crustal processes and record of rheological (thermal and mechanical) reequilibration prevailed during the final stages of orogeny. The significance of cordierite formation and its possible relationship with melt formation are investigated applying theoretical calculations in the MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (MnNCKFMASH) system. Results of numerical modelling of the mineral assemblages in pressure-temperature-composition (P-T-X) pseudosections using Perple_X infer that the sequence of reactions involving formation of cordierite-orthopyroxene-melt assemblage is consistent with an isothermal decompression (with a pressure drop of >1.5 kbars) at high temperatures (>800 °C), forming leucosomes. Biotite dehydration melting reactions, occurring above 4.5 kbars constrain prograde arm of the P-T trajectory and is interpreted as a product of crustal thickening, which was followed by rapid decompression. The final stage of exhumation is characterized by rehydration of cordierites in the melanosome by melt-solid interactions at exceptionally low-pressure (??3.2 kbars) conditions. The high-temperature isothermal decompression inferred from the mineral reactions and P-T-X pseudosections constitute a clockwise P-T path for the exhumation of the lower crust. This clockwise P-T path is consistent with the common tectonic model accepted for the genesis of granulite-facies migmatites during crustal thickening and later unroofing, accompanied with arc-continent collision. Our conclusions indicate low-P metamorphism and anatexis can be traced to convergent setting, where melt buoyancy considerably decreases density of the lithosphere and modifies rheology leading to rapid exhumation of the lower crust. Therefore, the crustal evolution in the Kerala Khondalite Belt is correlated with two stage processes: (i) thickening of the crust in relation to a continental-arc setting, followed by (ii) exhumation along a high-temperature stable geotherm with sufficient pressure release associated with syn- to post-convergence transpression and transtension.  相似文献   
4.
This note reports new occurrences of syenite bodies around Marunthurkota area from the Kerala khondalite belt (KKB). Petrological and geochemical studies suggest that the syenites have a pronounced A-type affinity, metaluminous characteristics with high concentrations of alkalies, Rb, Sr, Zr, and high K2O/Na2O ratio. Miaskitic nature (agpaitic index<1) of syenite suggest involvement of CO2 related phase in their genesis. The petrological characteristics signify crystallization of the rock at shallow levels within the crust. Geochemistry favours mantle origin of the magma and enrichment of Ba and Sr are indicative of involvement of carbonatite melt in the source region. The study envisages the presence of a juvenile CO2 enriched upper mantle below the southern Indian continental crust during the Pan-African time.  相似文献   
5.
6.
Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth’s atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-Sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km s−1. It is also shown that adaptive optics, in general, helps in minimising this effect.  相似文献   
7.
We have developed a low-cost off-the-shelf component star sensor (StarSense) for use in minisatellites and CubeSats to determine the attitude of a satellite in orbit. StarSense is an imaging camera with a limiting magnitude of 6.5, which extracts information from star patterns it records in the images. The star sensor implements a centroiding algorithm to find centroids of the stars in the image, a Geometric Voting algorithm for star pattern identification, and a QUEST algorithm for attitude quaternion calculation. Here, we describe the software package to evaluate the performance of these algorithms as a star sensor single operating system. We simulate the ideal case where sky background and instrument errors are omitted, and a more realistic case where noise and camera parameters are added to the simulated images. We evaluate such performance parameters of the algorithms as attitude accuracy, calculation time, required memory, star catalog size, sky coverage, etc., and estimate the errors introduced by each algorithm. This software package is written for use in MATLAB. The testing is parametrized for different hardware parameters, such as the focal length of the imaging setup, the field of view (FOV) of the camera, angle measurement accuracy, distortion effects, etc., and therefore, can be applied to evaluate the performance of such algorithms in any star sensor. For its hardware implementation on our StarSense, we are currently porting the codes in form of functions written in C. This is done keeping in view its easy implementation on any star sensor electronics hardware.  相似文献   
8.
Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ~22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.  相似文献   
9.
Space astronomy in the last 40 years has largely been done from spacecraft in low Earth orbit (LEO) for which the technology is proven and delivery mechanisms are readily available. However, new opportunities are arising with the surge in commercial aerospace missions. We describe here one such possibility: deploying a small instrument on the Moon. This can be accomplished by flying onboard the Indian entry to the Google Lunar X PRIZE competition, Team Indus mission, which is expected to deliver a nearly 30 kgs of payloads to the Moon, with a rover as its primary payload. We propose to mount a wide-field far-UV (130–180 nm) imaging telescope as a payload on the Team Indus lander. Our baseline operation is a fixed zenith pointing but with the option of a mechanism to allow observations of different attitudes. Pointing towards intermediate ecliptic latitude (50° or above) ensures that the Sun is at least 40° off the line of sight at all times. In this position, the telescope can cover higher galactic latitudes as well as parts of Galactic plane. The scientific objectives of such a prospective are delineated and discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号