首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
天文学   6篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
Moroz  L. V.  Baratta  G.  Distefano  E.  Strazzulla  G.  Starukhina  L. V.  Dotto  E.  Barucci  M. A. 《Earth, Moon, and Planets》2003,92(1-4):279-289
Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.  相似文献   
2.
A computer simulation of the sputtering of lunar soil by solar wind protons was performed with the TRIM program. The rate of the sputtering-induced erosion of regolith particles was shown to be less than 0.2 Å per year. A preferential sputtering of Ca, Mg, and O was found along with a less intense sputtering of Fe, Si, and Ti. However, with no other selection mechanisms, surface concentrations of the atoms would differ from the volume ones by no more than 6 %. The enrichment of rims of regolith particles with iron occurs as a result of selective removal of lighter atoms from the lunar surface because of different energies of escape from the Moon's gravity. The energy distributions proved to be the same for all sorts of the sputtered atoms, except for implanted hydrogen; thus, a greater fraction of the atoms left on the lunar surface corresponds to heavier elements. According to simulation results, the concentration of reduced iron observed in the mature regolith could be attained during the time of regolith particle exposure to the present flux of solar wind (105 years). Thus, sputtering can provide the concentration of Fe0 observed in regolith. On periphery of a cloud of impact vapor the temperature is too low for an irreversible selective removal of evaporation products; thus, a meteoritic bombardment contributes to the formation of composition of the rims of regolith particles mainly through enrichment of the rims with elements from the bulk of the particles. The estimates of fluxes of backscattered solar wind protons and of sputtered protons, earlier implanted to the regolith, demonstrated that their contribution to the proton flux near the poles is only 104 cm–2 s–1. This is by two orders of magnitude smaller than the proton flux from the Earth's magnetosphere which is, therefore, the main source of protons for permanently shaded polar craters of the Moon.  相似文献   
3.
From the Clementine UVVIS imagery of the lunar surface, the abundance of agglutinates in the lunar regolith and their composition in terms of FeO and Al2O3 oxides have been predicted. Data on the spectral, chemical, and mineralogic measurements of about 30 lunar soil samples from the Lunar Samples Characterization Consortium (LSCC) collection were used. The fulfilled prognosis confirms that the mare agglutinates are enriched in Al2O3 and depleted of FeO, while the highland agglutinates are depleted of Al2O3 and enriched in FeO. This behavior can be caused by the global transport of the lunar surface material induced by cosmogenic factors.  相似文献   
4.
We present new results obtained from the analysis of the seasonal variations in the asymmetry of polarization of light reflected by Jupiter. From the 23-year set of observations, the anticorrelation between the asymmetries of polarization and insolation has been revealed. The mechanism explaining the observed seasonal variations of polarization has been proposed. The core of this mechanism is the effect of temperature changes in the planetary stratosphere on the processes of the stratospheric aerosol haze formation. Additional irregular factors that may influence the observed polarization asymmetry are considered.  相似文献   
5.
We propose a technique that interpolates available lunar prospector gamma-ray spectrometer (GRS) data using Clementine UVVIS spectral reflectance images. The main idea is to use low resolution GRS data as a “ground truth” to establish relationships linking optical data and geochemical information maximizing the respective correlation coefficients. Then the relationships and Clementine UVVIS data are used to derive elemental abundance maps with significantly improved spatial resolution. The main limitation of the technique is its dependence on how well the abundance of the elements correlates with the Clementine UVVIS data. The technique can also be applied to analysis of coming D-CIXS/Smart-1 and AMIE/Smart-1 data to increase resolution of lunar compositional maps. As an illustration of the suggested technique, maps for the elements Fe, Ti, O, Al, Ca, and Mg with pixel size 15 km×15 km are presented. The Fe and Ti distributions resemble qualitatively to the maps obtained with the well-known technique by lucey et al. (2000a. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105, 20,297-20,306), though in our case the ranges of Fe and Ti variations are, respectively, wider and narrower than for lucey's maps. New maps for the elements Fe, Ti, O, Al, Ca, and Mg appear to be informative. For instance, the map of oxygen abundance demonstrates an anomaly in the crater Tycho. The maps of Fe and Al contents show for highland regions slight variations related to maturity degree. Reliability of this relation is confirmed with lunar sample data. The reason of the correlation between chemical composition and exposition age of the lunar surface can be the global transport of the lunar surface material due to meteorite impacts.  相似文献   
6.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号