首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地质学   1篇
天文学   20篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   4篇
  2003年   3篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有21条查询结果,搜索用时 671 毫秒
1.
Moroz  L. V.  Baratta  G.  Distefano  E.  Strazzulla  G.  Starukhina  L. V.  Dotto  E.  Barucci  M. A. 《Earth, Moon, and Planets》2003,92(1-4):279-289
Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.  相似文献   
2.
For many years an ongoing research program performed at our laboratory has had the aim to investigate the implantation of reactive ions in ices relevant to planetology by using IR spectroscopy. We present new results obtained by implanting 200 keV sulfur ions into water ice at 80 K. We have looked at the formation of sulfur-bearing molecules such as sulfuric acid, sulfur dioxide and hydrogen sulfide. We find that hydrated sulfuric acid is formed with high yield (0.65±0.1 molecules/ion). An upper limit to the production yield of SO2 (Y0.025 molecules/ion) has been estimated; no hydrogen sulfide has been detected. The formation of hydrogen peroxide is confirmed. Ozone is not detected. The results are discussed relevant to the inquiry on the radiolytic sulfur cycle considered responsible for the formation of sulfur-bearing molecules on the surfaces of the Galilean satellites. We demonstrate that sulfur implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic process. It is more difficult to say if the observed sulfur dioxide is quantitatively supported by only sulfur implantation; additional experimental studies are necessary along with direct observations, especially at UV wavelengths such as those that could be performed by instruments on board Hubble Space Telescope or by the forthcoming World Space Observatory (WSO/UV).  相似文献   
3.
We present results obtained for Epinal (H5), an ordinary chondrite meteorite, irradiated with 60 keV Ar++ ions, simulating solar wind heavy particle irradiation. Bidirectional reflectance spectra (0.3-2.67 μm) measured after irradiating Epinal samples with different ion fluences exhibit a progressive reddening that is similar to the spread of spectra observed for S-type near-Earth asteroids. The timescales for inducing the same effects in space as those obtained in laboratory are estimated to be 104-106 yr. These results suggest irradiation by heavy ions may be a very efficient weathering process in near-Earth space.  相似文献   
4.
Ion irradiation experiments have been performed on silicates (bulk samples) rich of olivine, pyroxene, and serpentine to simulate the effects of space weathering induced on asteroids by solar wind ions. We have used different ions (H+, He+, Ar+, Ar2+) having different energies (from 60 to 400 keV) to weather the samples, probed by Raman spectroscopy and UV-vis-NIR reflectance spectroscopy. All the irradiated materials have shown reddening and darkening of reflectance spectra in the 0.25-2.7 μm spectral range. We have found that the increase of the spectral slope of the continuum across the 1-μm band is strongly related with the number of displacements caused by colliding ions because of elastic collisions with the target nuclei. The spectral slopes have been compared, at increasing ion fluence, with those from irradiated Epinal meteorite. We show that formation of nuclear displacements by solar wind ion irradiation is a physical mechanism that reddens the asteroidal surfaces on a time-scale lower than 106 years.  相似文献   
5.
The stability of C60 and C70 fullerenes in the interstellar medium deposited on dust surface or embedded in meteorites and comets has been simulated with γ irradiation and with He+ ion bombardment. It is shown by vibrational spectroscopy that a γ radiation dose of 2.6 MGy (1 Gy = 1 joule absorbed energy per kilogram) causes partial oligomerization of both C60 and C70 fullerenes. Oligomers are made by fullerene cages chemically connected each other which can yield back free fullerenes by a thermal treatment. The amount of irreversibly polymerized fullerenes caused by 2.6 MGy as deduced as the toluene insoluble fraction has been determined as 1.7 and 15 per cent by weight, respectively, for C60 and C70 fullerene. The radiation dose generated by radionuclides decay and expected to be delivered to fullerenes buried at a depth of more than 20 m in comets and meteorites is about 3 MGy per 109 yr. Since fullerenes are by far resistant to such radiation dose they can survive for at least some billion years inside comets and meteorites and in fact have been detected inside certain carbonaceous chondrites. On the other hand, the direct exposure of fullerenes to cosmic rays for instance when they are adsorbed or deposited on the surface of carbon dust corresponds to the delivery of a radiation dose comprised between 30 and 65 MGy per 109 yr. Experimental bombardment of both C60 and C70 fullerenes for instance with He+ ions has shown that the complete amorphization occurs at about 250 MGy. Thus in ∼4 Gyr exposure to cosmic rays it is expected a complete amorphization.  相似文献   
6.
We have quantitatively studied, by infrared absorption spectroscopy, the CO/CO2 molecular number ratio after ion irradiation of ices and mixtures containing astrophysically relevant species such as CO, CO2, H2O, CH4, CH3OH, NH3, O2, and N2 at 12–15 K. The ratios have also been measured after warm up to temperatures between 12 and 200 K. As a general result we find that the CO/CO2 ratio decreases with the irradiation dose (amount of energy deposited on the sample). In all of the studied mixtures, as expected, it decreases with increasing temperature because of CO sublimation. However the temperature where CO sublimes strongly depends on the initial mixture, remaining at a temperature over 100 K in some cases. Our results might be relevant to interpret the observed CO/CO2 ratio in several astrophysical scenarios such as planetary icy surfaces and ice mantles on grains in the interstellar medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
G Strazzulla  G Leto  M.A Satorre 《Icarus》2003,164(1):163-169
Solid surfaces of atmosphereless objects in the Solar System are continuously irradiated by energetic ions (from solar wind and flares, planetary magnetospheres, and cosmic rays). Reactive ions (e.g., H, C, N, O, S) induce all of the effects of any other ion including the synthesis of molecular species originally not present in the target. In addition, these ions have a chance, by implantation in the target, of forming new species containing the projectile. An ongoing research program performed at our laboratory aims at investigating the implantation of reactive ions in many relevant ices (and mixtures) by using IR spectroscopy. Here we present new results obtained by implanting carbon and nitrogen ions in water ice at 16 and 77 K. Carbon implantation produces carbon dioxide and the production yield has been measured. Nitrogen implantation does not produce any N-bearing species detectable by IR spectroscopy. Both ions are also capable of synthesizing hydrogen peroxide at the two investigated temperatures. We show that, although a relevant quantity of CO2 can be formed by C implantation in the icy jovian moons, this is not the dominant formation mechanism of carbon dioxide.  相似文献   
8.
We have obtained infrared spectra of planetary nebulae in the 3.0–3.8 m range using IRSPEC, the ESO grating infrared spectrograph, attached to the 3.6-m telescope. We find evidence of an evolution of the carriers of the unidentified emission bands in the 3 m region, and explain the observed behaviour in terms of ion irradiation from fast stellar wind.Based on observations collected at the European Southern Observatory, La Silla, Chile.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Univers, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
9.
Silicates are one of the principal components present in Solar System objects.Silicates evolve in space modifying their physical properties according to theastronomical environments they go through. To characterise the nature of TNOsin the framework of the formation and evolution of the Solar System, experimentson structural transitions of silicates have been performed in the laboratoryto simulate some of the processing suffered by the dust. The infrared spectralproperties of possible silicate candidates thought to be present in TNOs have beenstudied. The results of thermal annealing of amorphous silicates and amorphisationof crystalline forsterite (pure-Mg olivine) by ion irradiation are presented. Theobservable properties of TNOs surfaces are inferred.  相似文献   
10.
In this paper we present a comparison of the observed absorption band at about 660 cm-1 (15.1 μm) toward NGC7538 IRS1 attributed to the bending mode of solid CO2 with laboratory spectra of ion irradiated mixtures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号