首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   2篇
大气科学   8篇
地质学   8篇
天文学   2篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Chondritic Mg isotope composition of the Earth   总被引:2,自引:0,他引:2  
The processes of planetary accretion and differentiation have potentially been recorded as variations in the stable isotope ratios of the major elements between planetary objects. However, the magnitude of observed isotopic variations for several elements (Mg, Fe, Si) is at the limit of what current analytical precision and accuracy are able to resolve. Here, we present a comprehensive data set of Mg isotope ratios measured in ocean island and mid-ocean ridge basalts, peridotites and chondrites. The precision and accuracy were verified by isotopic standard addition for two samples, one carbonaceous chondrite (Murchison) and one continental flood basalt (BCR-1). In contrast with some previous studies, our data from terrestrial and chondritic materials have invariant Mg isotope ratios within the uncertainty of the method (0.1‰ for the 26Mg/24Mg ratio, 2SD). Although isotopic variations of less than about 0.1‰ could still be present, the data demonstrate that, at this level of uncertainty, the bulk silicate Earth and chondritic Mg reservoir have a homogeneous δ26Mg = −0.23‰ (26Mg/24Mg ratio of the sample relative to the DSM3 standard set to zero by definition). This implies that neither planetary accretion processes nor partial mantle melting and subsequent shallow-level differentiation have fractionated Mg isotope ratios. These observations imply in particular that the formation of the Earth cannot stem from preferential sorting of chondrite constituents that would have been fractionated in their Mg isotope composition. It also implies that unlike oxygen isotopes, there was no zonation in Mg isotopes in the inner solar system.  相似文献   
2.
Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called “faint young Sun problem” have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geological evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 partial pressures for the late Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data and model results disappears for the late Archaean and early proterozoic.  相似文献   
3.
The influence of the Arctic atmosphere on Northern Hemisphere midlatitude tropospheric weather and climate is explored by comparing the skill of two sets of 14-day weather forecast experiments using the ECMWF model with and without relaxation of the Arctic atmosphere towards ERA-Interim reanalysis data during the integration. Two pathways are identified along which the Arctic influences midlatitude weather: a pronounced one over Asia and Eastern Europe, and a secondary one over North America. In general, linkages are found to be strongest(weakest) during boreal winter(summer) when the amplitude of stationary planetary waves over the Northern Hemisphere is strongest(weakest). No discernible Arctic impact is found over the North Atlantic and North Pacific region, which is consistent with predominantly southwesterly flow. An analysis of the flow-dependence of the linkages shows that anomalous northerly flow conditions increase the Arctic influence on midlatitude weather over the continents. Specifically, an anomalous northerly flow from the Kara Sea towards West Asia leads to cold surface temperature anomalies not only over West Asia but also over Eastern and Central Europe. Finally, the results of this study are discussed in the light of potential midlatitude benefits of improved Arctic prediction capabilities.  相似文献   
4.
A new method has been developed to separate the compositional variations in ocean island basalts into those that result from variations in source composition and from the melting process itself. The approach depends on correlations between isotope ratios, which can only come from source inhomogeneities, and elemental concentrations. Analysis of three data sets shows that the inhomogeneities beneath Theistareykir, in NE Iceland, Kilauea and Pitcairn can be produced by subduction of oceanic islands and volcanic ridges. The thicknesses of the lithosphere on which such islands were constructed and potential temperatures of the plumes that produced them can be estimated from the geochemical observations. Model ages are harder to determine, though simple assumptions give about 400 Ma for the Theistareykir source and 1.2 Ga for Kilauea. The model may also provide a physical explanation for the commonly used isotopic classification of ocean island basalts, with the isotopic composition changing from HIMU through EMII to EMI as the melt fraction increases. These results have been obtained from a small number of data sets obtained from ocean island basalts erupted in small areas during short time intervals. More such observations are needed to discover whether geochemical observations from other islands are consistent with the same model.  相似文献   
5.
Basanites and nephelinites from the Tertiary Rhön area (Germany), which are part of the Central European Volcanic Province (CEVP), have high MgO, Ni and Cr contents and prominent garnet signatures indicating that they represent near-primary magmas formed by melting of a CO2-bearing peridotitic mantle source at high pressure. The Pb and Hf isotope (and previously published Nd and Sr isotope) ratios of the Rhön lavas are rather uniform, whereas the Os isotope composition is highly variable. For the most primitive basanites, Pb, Os and Hf isotope compositions fall within the range of enriched MORB and some OIB. Other basanites and nephelinites with low Os concentrations have distinctly more radiogenic Os (187Os/188Os: 0.160–0.469) isotope compositions, which are inferred to originate from crustal contamination. The samples with the highest Os concentrations have the lowest Os isotope ratios (187Os/188Os(23 Ma): 0.132–0.135), and likely remain unaffected by crustal contamination. Together with their fairly depleted Sr, Nd and Hf isotope ratios, the isotopic composition of the Rhön lavas suggests derivation from an asthenospheric mantle source. Prominent negative K and Rb anomalies, however, argue for melting amphibole or phlogopite-bearing sources, which can only be stable in the cold lithosphere. We therefore propose that asthenospheric melts precipitated at the asthenosphere-lithosphere thermal boundary as veins in the lithospheric mantle and were remelted or incorporated after only short storage times (about 10–100 million years) by ascending asthenospheric melts. Due to the short residence time incorporation of the vein material imposes the prominent phlogopite/amphibole signature of the Rhön alkaline basalts but does not lead to a shift in the isotopic signatures. Melting of the lithospheric mantle cannot strictly be excluded, but has to be subordinate due to the lack of the respective isotope signatures, in good agreement with the fairly thin lithosphere observed in the Rhön area. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature portions incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.  相似文献   
6.
The combination of age determination and geochemical tracers allows understanding the source evolution during magmatism. We studied the Sapat Complex, in the exhumed Cretaceous Kohistan Paleo-Island Arc, to reconstruct the formation of the juvenile lower arc crust and the evolution of the mantle source during arc magmatism. High precision ID-TIMS U/Pb dating on zircon, shows that a protracted period of magmatic accretion formed the Sapat Complex between 105 and 99 Ma. Since continued melt percolation processes that formed the lower crust obscured the original bulk rock Nd–Pb–Sr isotopic composition, we rely on the Hf isotopic composition of zircons of different ages to unravel the source evolution. Nd and Pb bulk isotopic compositions coupled with Hf isotopic composition on zircons allow reconstructing a geodynamical scenario for the Sapat Complex, and the Cretaceous history of the Arc. We suggest that trenchward migration of the hot mantle source at 105 Ma explains the small heterogeneous εHf signal between + 14 and + 16. This heterogeneity vanished within ca. 2 million years, and the εHf of the source evolved from + 16 to + 14 at 99 Ma. Integrated to the Kohistan Cretaceous history, which has a baseline of εHf  14, these data pinpoint two geodynamical events, with slab retreat and the formation of the Sapat Complex followed by splitting of the Kohistan island arc at 85 Ma.  相似文献   
7.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   
8.
We present new reference values for the NIST SRM 610–617 glasses following ISO guidelines and the International Association of Geoanalysts’ protocol. Uncertainties at the 95% confidence level (CL) have been determined for bulk‐ and micro‐analytical purposes. In contrast to former compilation procedures, this approach delivers data that consider present‐day requirements of data quality. New analytical data and the nearly complete data set of the GeoReM database were used for this study. Data quality was checked by the application of the Horwitz function and by a careful investigation of analytical procedures. We have determined quantitatively possible element inhomogeneities using different test portion masses of 1, 0.1 and 0.02 μg. Although avoiding the rim region of the glass wafers, we found moderate inhomogeneities of several chalcophile/siderophile elements and gross inhomogeneities of Ni, Se, Pd and Pt at small test portion masses. The extent of inhomogeneity was included in the determination of uncertainties. While the new reference values agree with the NIST certified values with the one exception of Mn in SRM 610, they typically differ by as much as 10% from the Pearce et al. (1997) values in current use. In a few cases (P, S, Cl, Ta, Re) the discrepancies are even higher.  相似文献   
9.
Semmler  Tido  Pithan  Felix  Jung  Thomas 《Climate Dynamics》2020,54(7):3307-3321
Climate Dynamics - In which direction is the influence larger: from the Arctic to the mid-latitudes or vice versa? To answer this question, CO2 concentrations have been regionally increased in...  相似文献   
10.
This paper compares how well satellite versus weather station measurements of climate predict agricultural performance in Brazil, India, and the United States. Although weather stations give accurate measures of ground conditions, they entail sporadic observations that require interpolation where observations are missing. In contrast, satellites have trouble measuring some ground phenomenon such as precipitation but they provide complete spatial coverage of various parameters over a landscape. The satellite temperature measurements slightly outperform the interpolated ground station data but the precipitation ground measurements generally outperform the satellite surface wetness index. In India, the surface wetness index outperforms station precipitation but this may be reflecting irrigation, not climate. The results suggest that satellites provide promising measures of temperature but that ground station data may still be preferred for measuring precipitation in rural settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号