首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
天文学   37篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1988年   1篇
  1987年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有37条查询结果,搜索用时 158 毫秒
1.
We present digital pictures of an active region network cell in five quantities, measured simultaneously: continuum intensity, line-center intensity, equivalent width, magnetogram signal, and magnetic field strength. These maps are derived from computer analysis of circularly polarized line profiles of FeI 5250.2; spectral and spatial resolution are 1/40 Å and 1.5, respectively. Measured Zeeman splittings show the existence of strong magnetic fields (1000–1800 G) at nearly all points with a magnetogram signal exceeding 125 G. The mean and rms deviation of the field strengths change by less than 20% over a factor-of-four range of fluxes. From the significant disparity between measured fluxes and field strengths, we conclude that large flux patches (up to 4 across) consist of closely-packed unresolved filaments. The smallest filaments must be less than 0.7 in diameter. We also observe the dark component of the photospheric network, which appears to contain sizable transverse fields.  相似文献   
2.
The Fourier techniques of Paper I have been exhaustively calibrated using Unno's results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic field strengths and inclination angles can be measured very accurately from noisy, saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of our error analysis are presented graphically.  相似文献   
3.
We study dynamics of quiescent prominences using several data sets taken with the Solar Optical Telescope (SOT) on Hinode. We find a number of processes occurring at different stages of prominence evolution that are common for all of our chosen cases and, having universal character, can be related to fundamental plasma instabilities. We combine the observational evidence and theory to identify these instabilities. Here we discuss three examples: i) prominence cavity formation and its evolution, associated with a screw-pinch instability; ii) development of a regular series of plumes and spikes typical to the Rayleigh?–?Taylor (RT) instability; and iii) the appearance of growing ripples at the prominence/corona interface, often followed by a sudden collimated mass upflow, attributed to the Kelvin?–?Helmholtz (KH) instability. The conditions for transition from a linear (rippling mode) to nonlinear stage of the KH instability, known to have an explosive character, are specified. Given excellent Hinode data, all three aspects of prominence dynamics allow quantitative analysis.  相似文献   
4.
Solar Physics - We measure geometric and physical parameters oftransverse oscillations in 26 coronal loops, out of the 17 events described in Paper I by Schrijver, Aschwanden, and Title (2002)....  相似文献   
5.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   
6.
Lites  B.W.  Scharmer  G.B.  Berger  T.E.  Title  A.M. 《Solar physics》2004,221(1):65-84
Blue continuum images of active regions at ∼ 60° from the center of the solar disk obtained with the new Swedish 1-m Solar Telescope reveal heretofore unreported structure of the magnetized solar atmosphere. Perhaps the most striking aspect of these images is that, at an angular resolution of 0.12″, they show clearly the three-dimensional structure of the photosphere. In particular, the Wilson depression of the dark floors of pores is readily apparent. Conversely, the segmented structure of light bridges running through sunspots and pores reveal that light bridges are raised above the dark surroundings. The geometry of light bridges permits estimates of the height of their central (slightly darker) ridge: typically in the range 200–450 km. These images also clearly show that facular brightenings outside of sunspots and pores occur on the disk-center side of those granules just limbward of intergranular lanes that presumably harbor the associated plage magnetic flux. In many cases the brightening extends 0.5″ or more over those granules. Furthermore, a very thin, darker lane is often found just centerward of the facular brightening. We speculate that this feature is the signature of cool down flows that surround flux tubes in dynamical models. These newly recognized observational aspects of photospheric magnetic fields should provide valuable constraints for MHD models of the magnetized photosphere, and examination of those models as viewed from oblique angles is encouraged.  相似文献   
7.
8.
What is Moss?     
Berger  T.E.  De Pontieu  B.  Fletcher  L.  Schrijver  C.J.  Tarbell  T.D.  Title  A.M. 《Solar physics》1999,190(1-2):409-418
TRACE observations of active regions show a peculiar extreme ultraviolet (EUV) emission over certain plage areas. Termed `moss' for its spongy, low-lying, appearance, observations and modeling imply that the phenomenon is caused by thermal conduction from 3–5 MKcoronal loops overlying the plage: moss is the upper transition region emission of hot coronal loops. The spongy appearance is due to the presence of chromospheric jets or `spicules' interspersed with the EUV emission elements. High cadence TRACE observations show that the moss EUV elements interact with the chromospheric jets on 10 s time scales. The location of EUV emission in the moss does not correlate well to the locations of underlying magnetic elements in the chromosphere and photosphere, implying a complex magnetic topology for coronal loop footpoint regions. We summarize here the key observations leading to these conclusions and discuss new implications for understanding the structuring of the outer solar atmosphere. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005286503963  相似文献   
9.
Schrijver  Carolus J.  Title  Alan M. 《Solar physics》1999,188(2):331-344
Eleven microwave spike events observed with the 2.6–3.8 GHz spectrometer of Beijing Astronomical Observatory (BAO) are analysed. The polarization degrees of spikes are variable, some spikes have frequency drift with the drift rate of several GHz s–1. In particular, the time delay (8 ms) between the two polarization modes of spike is detected, which is different from previous results. According to the leading spot rule, we conclude that the o-modes arrive first. Moreover, the reversal of polarization sense versus frequency is also found. A change of the emission mode may be the cause of the polarization reversal.  相似文献   
10.
This paper describes the wave-front correction system developed for the Sunrise balloon telescope, and it provides information about its in-flight performance. For the correction of low-order aberrations, a Correlating Wave-Front Sensor (CWS) was used. It consisted of a six-element Shack??C?Hartmann wave-front sensor (WFS), a fast tip-tilt mirror for the compensation of image motion, and an active telescope secondary mirror for focus correction. The CWS delivered a stabilized image with a precision of 0.04?arcsec (rms), whenever the coarse pointing was better than ???45?arcsec peak-to-peak. The automatic focus adjustment maintained a focus stability of 0.01?waves in the focal plane of the CWS. During the 5.5?day flight, good image quality and stability were achieved during 33?hours, containing 45?sequences, which lasted between 10 and 45?min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号