首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
天文学   2篇
  2010年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We present two scenarios for production of the Quadrantid stream based on two different models for its origin: the extinct model in which 2003EH1 was an active comet that released the dust particles during past 5000 years, stopping its activity abruptly in AD 1488; and the split model; in which a catastrophic disruption of an asteroid at AD 1488 released a large number of dust particles in a single event. We calculate the orbital evolution of test particles released in both cases and derive the resulting size distribution of surviving meteoroids in the current Quadrantid stream in the form of s −α ds, where s denotes the radius of a meteoroid. We find α = 3.1 in the extinct model and 2.0 in the split model. In addition, the radius of the surviving meteoroids is derived as s >10 μm in the both models. We propose, based on our estimation of the infrared color ratio for the Quadrantid stream derived from both models, that infrared observations of the Quadrantid stream may determine which origin model is more reasonable.  相似文献   
2.
We compare various objects as the possible parent comet of the1998 June Boötid, by using the Tisserand invariant and the D-discriminant. Furthermore,in order to investigate the behaviour of the meteoric stream orbit, wesimulate the orbital evolution of test particles that are released from7P/Pons–Winnecke. We show firstly that the parent comet of the 1998 June Boötids, is 7P/Pons–Winnecke, and secondly that the meteoroids which constitute 1998 June Boötids were released in 1819 and 1869 from the parent comet. In themid-1900s the meteoroids started to transfer to Earth-colliding orbitsby Jovian perturbations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号